File: statistics.go

package info (click to toggle)
golang-github-holiman-bloomfilter 2.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 144 kB
  • sloc: makefile: 2
file content (50 lines) | stat: -rw-r--r-- 1,140 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
// Package bloomfilter is face-meltingly fast, thread-safe,
// marshalable, unionable, probability- and
// optimal-size-calculating Bloom filter in go
//
// https://github.com/steakknife/bloomfilter
//
// Copyright © 2014, 2015, 2018 Barry Allard
//
// MIT license
//
package v2

import (
	"math"
	"math/bits"
)

// CountBitsUint64s count 1's in b
func CountBitsUint64s(b []uint64) int {
	c := 0
	for _, x := range b {
		c += bits.OnesCount64(x)
	}
	return c
}

// PreciseFilledRatio is an exhaustive count # of 1's
func (f *Filter) PreciseFilledRatio() float64 {
	f.lock.RLock()
	defer f.lock.RUnlock()
	return float64(CountBitsUint64s(f.bits)) / float64(f.M())
}

// N is how many elements have been inserted
// (actually, how many Add()s have been performed?)
func (f *Filter) N() uint64 {
	f.lock.RLock()
	defer f.lock.RUnlock()

	return f.n
}

// FalsePosititveProbability is the upper-bound probability of false positives
//  (1 - exp(-k*(n+0.5)/(m-1))) ** k
func (f *Filter) FalsePosititveProbability() float64 {
	k := float64(f.K())
	n := float64(f.N())
	m := float64(f.M())
	return math.Pow(1.0-math.Exp((-k)*(n+0.5)/(m-1)), k)
}