1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
|
// uint256: Fixed size 256-bit math library
// Copyright 2020 uint256 Authors
// SPDX-License-Identifier: BSD-3-Clause
package uint256
import (
"fmt"
"math/big"
"testing"
)
type opDualArgFunc func(*Int, *Int, *Int) *Int
type bigDualArgFunc func(*big.Int, *big.Int, *big.Int) *big.Int
type opCmpArgFunc func(*Int, *Int) bool
type bigCmpArgFunc func(*big.Int, *big.Int) bool
type binaryOpEntry struct {
name string
u256Fn opDualArgFunc
bigFn bigDualArgFunc
}
func lookupBinary(name string) binaryOpEntry {
for _, tc := range binaryOpFuncs {
if tc.name == name {
return tc
}
}
panic(fmt.Sprintf("%v not found", name))
}
var binaryOpFuncs = []binaryOpEntry{
{"Add", (*Int).Add, (*big.Int).Add},
{"Sub", (*Int).Sub, (*big.Int).Sub},
{"Mul", (*Int).Mul, (*big.Int).Mul},
{"Div", (*Int).Div, bigDiv},
{"Mod", (*Int).Mod, bigMod},
{"SDiv", (*Int).SDiv, bigSDiv},
{"SMod", (*Int).SMod, bigSMod},
{"And", (*Int).And, (*big.Int).And},
{"Or", (*Int).Or, (*big.Int).Or},
{"Xor", (*Int).Xor, (*big.Int).Xor},
{"Exp", (*Int).Exp, func(b1, b2, b3 *big.Int) *big.Int { return b1.Exp(b2, b3, bigtt256) }},
{"Lsh", u256Lsh, bigLsh},
{"Rsh", u256Rsh, bigRsh},
{"SRsh", u256SRsh, bigSRsh},
{"DivModDiv", divModDiv, bigDiv},
{"DivModMod", divModMod, bigMod},
{"udivremDiv", udivremDiv, bigDiv},
{"udivremMod", udivremMod, bigMod},
{"ExtendSign", (*Int).ExtendSign, bigExtendSign},
}
var cmpOpFuncs = []struct {
name string
u256Fn opCmpArgFunc
bigFn bigCmpArgFunc
}{
{"Eq", (*Int).Eq, func(a, b *big.Int) bool { return a.Cmp(b) == 0 }},
{"Lt", (*Int).Lt, func(a, b *big.Int) bool { return a.Cmp(b) < 0 }},
{"Gt", (*Int).Gt, func(a, b *big.Int) bool { return a.Cmp(b) > 0 }},
{"Slt", (*Int).Slt, func(a, b *big.Int) bool { return bigS256(a).Cmp(bigS256(b)) < 0 }},
{"Sgt", (*Int).Sgt, func(a, b *big.Int) bool { return bigS256(a).Cmp(bigS256(b)) > 0 }},
{"CmpEq", func(a, b *Int) bool { return a.Cmp(b) == 0 }, func(a, b *big.Int) bool { return a.Cmp(b) == 0 }},
{"CmpLt", func(a, b *Int) bool { return a.Cmp(b) < 0 }, func(a, b *big.Int) bool { return a.Cmp(b) < 0 }},
{"CmpGt", func(a, b *Int) bool { return a.Cmp(b) > 0 }, func(a, b *big.Int) bool { return a.Cmp(b) > 0 }},
{"LtUint64", func(a, b *Int) bool { return a.LtUint64(b.Uint64()) }, func(a, b *big.Int) bool { return a.Cmp(new(big.Int).SetUint64(b.Uint64())) < 0 }},
{"GtUint64", func(a, b *Int) bool { return a.GtUint64(b.Uint64()) }, func(a, b *big.Int) bool { return a.Cmp(new(big.Int).SetUint64(b.Uint64())) > 0 }},
}
func checkBinaryOperation(t *testing.T, opName string, op opDualArgFunc, bigOp bigDualArgFunc, x, y Int) {
var (
b1 = x.ToBig()
b2 = y.ToBig()
f1 = x.Clone()
f2 = y.Clone()
operation = fmt.Sprintf("op: %v ( %v, %v ) ", opName, x.Hex(), y.Hex())
want, _ = FromBig(bigOp(new(big.Int), b1, b2))
have = op(new(Int), f1, f2)
)
// Compare result with big.Int.
if !have.Eq(want) {
t.Fatalf("%v\nwant : %#x\nhave : %#x\n", operation, want, have)
}
// Check if arguments are unmodified.
if !f1.Eq(x.Clone()) {
t.Fatalf("%v\nfirst argument had been modified: %x", operation, f1)
}
if !f2.Eq(y.Clone()) {
t.Fatalf("%v\nsecond argument had been modified: %x", operation, f2)
}
// Check if reusing args as result works correctly.
have = op(f1, f1, y.Clone())
if have != f1 {
t.Fatalf("%v\nunexpected pointer returned: %p, expected: %p\n", operation, have, f1)
}
if !have.Eq(want) {
t.Fatalf("%v\non argument reuse x.op(x,y)\nwant : %#x\nhave : %#x\n", operation, want, have)
}
have = op(f2, x.Clone(), f2)
if have != f2 {
t.Fatalf("%v\nunexpected pointer returned: %p, expected: %p\n", operation, have, f2)
}
if !have.Eq(want) {
t.Fatalf("%v\n on argument reuse x.op(y,x)\nwant : %#x\nhave : %#x\n", operation, want, have)
}
}
func TestBinaryOperations(t *testing.T) {
for _, tc := range binaryOpFuncs {
for _, inputs := range binTestCases {
f1 := MustFromHex(inputs[0])
f2 := MustFromHex(inputs[1])
checkBinaryOperation(t, tc.name, tc.u256Fn, tc.bigFn, *f1, *f2)
}
}
}
func Test10KRandomBinaryOperations(t *testing.T) {
for _, tc := range binaryOpFuncs {
for i := 0; i < 10000; i++ {
f1 := randNum()
f2 := randNum()
checkBinaryOperation(t, tc.name, tc.u256Fn, tc.bigFn, *f1, *f2)
}
}
}
func FuzzBinaryOperations(f *testing.F) {
f.Fuzz(func(t *testing.T, x0, x1, x2, x3, y0, y1, y2, y3 uint64) {
x := Int{x0, x1, x2, x3}
y := Int{y0, y1, y2, y3}
for _, tc := range binaryOpFuncs {
checkBinaryOperation(t, tc.name, tc.u256Fn, tc.bigFn, x, y)
}
})
}
func u256Rsh(z, x, y *Int) *Int {
return z.Rsh(x, uint(y.Uint64()&0x1FF))
}
func bigRsh(z, x, y *big.Int) *big.Int {
return z.Rsh(x, uint(y.Uint64()&0x1FF))
}
func u256Lsh(z, x, y *Int) *Int {
return z.Lsh(x, uint(y.Uint64()&0x1FF))
}
func u256SRsh(z, x, y *Int) *Int {
return z.SRsh(x, uint(y.Uint64()&0x1FF))
}
func bigLsh(z, x, y *big.Int) *big.Int {
return z.Lsh(x, uint(y.Uint64()&0x1FF))
}
func bigSRsh(z, x, y *big.Int) *big.Int {
return z.Rsh(bigS256(x), uint(y.Uint64()&0x1FF))
}
func bigExtendSign(result, num, byteNum *big.Int) *big.Int {
if byteNum.Cmp(big.NewInt(31)) >= 0 {
return result.Set(num)
}
bit := uint(byteNum.Uint64()*8 + 7)
mask := byteNum.Lsh(big.NewInt(1), bit)
mask.Sub(mask, big.NewInt(1))
if num.Bit(int(bit)) > 0 {
result.Or(num, mask.Not(mask))
} else {
result.And(num, mask)
}
return result
}
// bigDiv implements uint256/EVM compatible division for big.Int: returns 0 when dividing by 0
func bigDiv(z, x, y *big.Int) *big.Int {
if y.Sign() == 0 {
return z.SetUint64(0)
}
return z.Div(x, y)
}
// bigMod implements uint256/EVM compatible mod for big.Int: returns 0 when dividing by 0
func bigMod(z, x, y *big.Int) *big.Int {
if y.Sign() == 0 {
return z.SetUint64(0)
}
return z.Mod(x, y)
}
// bigSDiv implements EVM-compatible SDIV operation on big.Int
func bigSDiv(result, x, y *big.Int) *big.Int {
if y.Sign() == 0 {
return result.SetUint64(0)
}
sx := bigS256(x)
sy := bigS256(y)
n := new(big.Int)
if sx.Sign() == sy.Sign() {
n.SetInt64(1)
} else {
n.SetInt64(-1)
}
result.Div(sx.Abs(sx), sy.Abs(sy))
result.Mul(result, n)
return result
}
// bigSMod implements EVM-compatible SMOD operation on big.Int
func bigSMod(result, x, y *big.Int) *big.Int {
if y.Sign() == 0 {
return result.SetUint64(0)
}
sx := bigS256(x)
sy := bigS256(y)
neg := sx.Sign() < 0
result.Mod(sx.Abs(sx), sy.Abs(sy))
if neg {
result.Neg(result)
}
return bigU256(result)
}
// divModDiv wraps DivMod and returns quotient only
func divModDiv(z, x, y *Int) *Int {
var m Int
z.DivMod(x, y, &m)
return z
}
// divModMod wraps DivMod and returns modulus only
func divModMod(z, x, y *Int) *Int {
new(Int).DivMod(x, y, z)
return z
}
// udivremDiv wraps udivrem and returns quotient
func udivremDiv(z, x, y *Int) *Int {
var quot Int
if !y.IsZero() {
udivrem(quot[:], x[:], y, nil)
}
return z.Set(")
}
// udivremMod wraps udivrem and returns remainder
func udivremMod(z, x, y *Int) *Int {
if y.IsZero() {
return z.Clear()
}
var quot, rem Int
udivrem(quot[:], x[:], y, &rem)
return z.Set(&rem)
}
func checkCompareOperation(t *testing.T, opName string, op opCmpArgFunc, bigOp bigCmpArgFunc, x, y Int) {
var (
f1orig = x.Clone()
f2orig = y.Clone()
b1 = x.ToBig()
b2 = y.ToBig()
f1 = new(Int).Set(f1orig)
f2 = new(Int).Set(f2orig)
operation = fmt.Sprintf("op: %v ( %v, %v ) ", opName, x.Hex(), y.Hex())
want = bigOp(b1, b2)
have = op(f1, f2)
)
// Compare result with big.Int.
if have != want {
t.Fatalf("%v\nwant : %v\nhave : %v\n", operation, want, have)
}
// Check if arguments are unmodified.
if !f1.Eq(f1orig) {
t.Fatalf("%v\nfirst argument had been modified: %x", operation, f1)
}
if !f2.Eq(f2orig) {
t.Fatalf("%v\nsecond argument had been modified: %x", operation, f2)
}
}
func TestCompareOperations(t *testing.T) {
for _, tc := range cmpOpFuncs {
for _, inputs := range binTestCases {
f1 := MustFromHex(inputs[0])
f2 := MustFromHex(inputs[1])
checkCompareOperation(t, tc.name, tc.u256Fn, tc.bigFn, *f1, *f2)
}
}
}
func FuzzCompareOperations(f *testing.F) {
f.Fuzz(func(t *testing.T, x0, x1, x2, x3, y0, y1, y2, y3 uint64) {
x := Int{x0, x1, x2, x3}
y := Int{y0, y1, y2, y3}
for _, tc := range cmpOpFuncs {
checkCompareOperation(t, tc.name, tc.u256Fn, tc.bigFn, x, y)
}
})
}
|