1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848
|
// uint256: Fixed size 256-bit math library
// Copyright 2020 uint256 Authors
// SPDX-License-Identifier: BSD-3-Clause
package uint256
import (
"database/sql"
"database/sql/driver"
"encoding"
"encoding/binary"
"encoding/json"
"errors"
"fmt"
"io"
"math"
"math/big"
"math/bits"
"strings"
)
const (
maxWords = 256 / bits.UintSize // number of big.Words in 256-bit
// The constants below work as compile-time checks: in case evaluated to
// negative value it cannot be assigned to uint type and compilation fails.
// These particular expressions check if maxWords either 4 or 8 matching
// 32-bit and 64-bit architectures.
_ uint = -(maxWords & (maxWords - 1)) // maxWords is power of two.
_ uint = -(maxWords & ^(4 | 8)) // maxWords is 4 or 8.
)
// Compile time interface checks
var (
_ driver.Valuer = (*Int)(nil)
_ sql.Scanner = (*Int)(nil)
_ encoding.TextMarshaler = (*Int)(nil)
_ encoding.TextUnmarshaler = (*Int)(nil)
_ json.Marshaler = (*Int)(nil)
_ json.Unmarshaler = (*Int)(nil)
)
// ToBig returns a big.Int version of z.
// Return `nil` if z is nil
func (z *Int) ToBig() *big.Int {
if z == nil {
return nil
}
var b *big.Int
z.IntoBig(&b)
return b
}
// IntoBig sets a provided big.Int to the value of z.
// Sets `nil` if z is nil (thus the double pointer).
func (z *Int) IntoBig(b **big.Int) {
if z == nil {
*b = nil
return
}
if *b == nil {
*b = new(big.Int)
}
switch maxWords { // Compile-time check.
case 4: // 64-bit architectures.
if words := (*b).Bits(); cap(words) >= 4 {
// Enough underlying space to set all the uint256 data
words = words[:4]
words[0] = big.Word(z[0])
words[1] = big.Word(z[1])
words[2] = big.Word(z[2])
words[3] = big.Word(z[3])
// Feed it back to normalize (up or down within the big.Int)
(*b).SetBits(words)
} else {
// Not enough space to set all the words, have to allocate
words := [4]big.Word{big.Word(z[0]), big.Word(z[1]), big.Word(z[2]), big.Word(z[3])}
(*b).SetBits(words[:])
}
case 8: // 32-bit architectures.
if words := (*b).Bits(); cap(words) >= 8 {
// Enough underlying space to set all the uint256 data
words = words[:8]
words[0], words[1] = big.Word(z[0]), big.Word(z[0]>>32)
words[2], words[3] = big.Word(z[1]), big.Word(z[1]>>32)
words[4], words[5] = big.Word(z[2]), big.Word(z[2]>>32)
words[6], words[7] = big.Word(z[3]), big.Word(z[3]>>32)
// Feed it back to normalize (up or down within the big.Int)
(*b).SetBits(words)
} else {
// Not enough space to set all the words, have to allocate
words := [8]big.Word{
big.Word(z[0]), big.Word(z[0] >> 32),
big.Word(z[1]), big.Word(z[1] >> 32),
big.Word(z[2]), big.Word(z[2] >> 32),
big.Word(z[3]), big.Word(z[3] >> 32),
}
(*b).SetBits(words[:])
}
}
}
// FromBig is a convenience-constructor from big.Int.
// Returns a new Int and whether overflow occurred.
// OBS: If b is `nil`, this method returns `nil, false`
func FromBig(b *big.Int) (*Int, bool) {
if b == nil {
return nil, false
}
z := &Int{}
overflow := z.SetFromBig(b)
return z, overflow
}
// MustFromBig is a convenience-constructor from big.Int.
// Returns a new Int and panics if overflow occurred.
// OBS: If b is `nil`, this method does _not_ panic, but
// instead returns `nil`
func MustFromBig(b *big.Int) *Int {
if b == nil {
return nil
}
z := &Int{}
if z.SetFromBig(b) {
panic("overflow")
}
return z
}
// Float64 returns the float64 value nearest to x.
//
// Note: The `big.Float` version of `Float64` also returns an 'Accuracy', indicating
// whether the value was too small or too large to be represented by a
// `float64`. However, the `uint256` type is unable to represent values
// out of scope (|x| < math.SmallestNonzeroFloat64 or |x| > math.MaxFloat64),
// therefore this method does not return any accuracy.
func (z *Int) Float64() float64 {
if z.IsUint64() {
return float64(z.Uint64())
}
// See [1] for a detailed walkthrough of IEEE 754 conversion
//
// 1: https://www.wikihow.com/Convert-a-Number-from-Decimal-to-IEEE-754-Floating-Point-Representation
bitlen := uint64(z.BitLen())
// Normalize the number, by shifting it so that the MSB is shifted out.
y := new(Int).Lsh(z, uint(1+256-bitlen))
// The number with the leading 1 shifted out is the fraction.
fraction := y[3]
// The exp is calculated from the number of shifts, adjusted with the bias.
// double-precision uses 1023 as bias
biased_exp := 1023 + bitlen - 1
// The IEEE 754 double-precision layout is as follows:
// 1 sign bit (we don't bother with this, since it's always zero for uints)
// 11 exponent bits
// 52 fraction bits
// --------
// 64 bits
return math.Float64frombits(biased_exp<<52 | fraction>>12)
}
// SetFromHex sets z from the given string, interpreted as a hexadecimal number.
// OBS! This method is _not_ strictly identical to the (*big.Int).SetString(..., 16) method.
// Notable differences:
// - This method _require_ "0x" or "0X" prefix.
// - This method does not accept zero-prefixed hex, e.g. "0x0001"
// - This method does not accept underscore input, e.g. "100_000",
// - This method does not accept negative zero as valid, e.g "-0x0",
// - (this method does not accept any negative input as valid)
func (z *Int) SetFromHex(hex string) error {
return z.fromHex(hex)
}
// fromHex is the internal implementation of parsing a hex-string.
func (z *Int) fromHex(hex string) error {
if err := checkNumberS(hex); err != nil {
return err
}
if len(hex) > 66 {
return ErrBig256Range
}
z.Clear()
end := len(hex)
for i := 0; i < 4; i++ {
start := end - 16
if start < 2 {
start = 2
}
for ri := start; ri < end; ri++ {
nib := bintable[hex[ri]]
if nib == badNibble {
return ErrSyntax
}
z[i] = z[i] << 4
z[i] += uint64(nib)
}
end = start
}
return nil
}
// FromHex is a convenience-constructor to create an Int from
// a hexadecimal string. The string is required to be '0x'-prefixed
// Numbers larger than 256 bits are not accepted.
func FromHex(hex string) (*Int, error) {
var z Int
if err := z.fromHex(hex); err != nil {
return nil, err
}
return &z, nil
}
// MustFromHex is a convenience-constructor to create an Int from
// a hexadecimal string.
// Returns a new Int and panics if any error occurred.
func MustFromHex(hex string) *Int {
var z Int
if err := z.fromHex(hex); err != nil {
panic(err)
}
return &z
}
// UnmarshalText implements encoding.TextUnmarshaler. This method
// can unmarshal either hexadecimal or decimal.
// - For hexadecimal, the input _must_ be prefixed with 0x or 0X
func (z *Int) UnmarshalText(input []byte) error {
if len(input) >= 2 && input[0] == '0' && (input[1] == 'x' || input[1] == 'X') {
return z.fromHex(string(input))
}
return z.SetFromDecimal(string(input))
}
// SetFromBig converts a big.Int to Int and sets the value to z.
// TODO: Ensure we have sufficient testing, esp for negative bigints.
func (z *Int) SetFromBig(b *big.Int) bool {
z.Clear()
words := b.Bits()
overflow := len(words) > maxWords
switch maxWords { // Compile-time check.
case 4: // 64-bit architectures.
if len(words) > 0 {
z[0] = uint64(words[0])
if len(words) > 1 {
z[1] = uint64(words[1])
if len(words) > 2 {
z[2] = uint64(words[2])
if len(words) > 3 {
z[3] = uint64(words[3])
}
}
}
}
case 8: // 32-bit architectures.
numWords := len(words)
if overflow {
numWords = maxWords
}
for i := 0; i < numWords; i++ {
if i%2 == 0 {
z[i/2] = uint64(words[i])
} else {
z[i/2] |= uint64(words[i]) << 32
}
}
}
if b.Sign() == -1 {
z.Neg(z)
}
return overflow
}
// Format implements fmt.Formatter. It accepts the formats
// 'b' (binary), 'o' (octal with 0 prefix), 'O' (octal with 0o prefix),
// 'd' (decimal), 'x' (lowercase hexadecimal), and
// 'X' (uppercase hexadecimal).
// Also supported are the full suite of package fmt's format
// flags for integral types, including '+' and ' ' for sign
// control, '#' for leading zero in octal and for hexadecimal,
// a leading "0x" or "0X" for "%#x" and "%#X" respectively,
// specification of minimum digits precision, output field
// width, space or zero padding, and '-' for left or right
// justification.
func (z *Int) Format(s fmt.State, ch rune) {
z.ToBig().Format(s, ch)
}
// SetBytes8 is identical to SetBytes(in[:8]), but panics is input is too short
func (z *Int) SetBytes8(in []byte) *Int {
_ = in[7] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = binary.BigEndian.Uint64(in[0:8])
return z
}
// SetBytes16 is identical to SetBytes(in[:16]), but panics is input is too short
func (z *Int) SetBytes16(in []byte) *Int {
_ = in[15] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = binary.BigEndian.Uint64(in[0:8])
z[0] = binary.BigEndian.Uint64(in[8:16])
return z
}
// SetBytes16 is identical to SetBytes(in[:24]), but panics is input is too short
func (z *Int) SetBytes24(in []byte) *Int {
_ = in[23] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = binary.BigEndian.Uint64(in[0:8])
z[1] = binary.BigEndian.Uint64(in[8:16])
z[0] = binary.BigEndian.Uint64(in[16:24])
return z
}
func (z *Int) SetBytes32(in []byte) *Int {
_ = in[31] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = binary.BigEndian.Uint64(in[0:8])
z[2] = binary.BigEndian.Uint64(in[8:16])
z[1] = binary.BigEndian.Uint64(in[16:24])
z[0] = binary.BigEndian.Uint64(in[24:32])
return z
}
func (z *Int) SetBytes1(in []byte) *Int {
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(in[0])
return z
}
func (z *Int) SetBytes9(in []byte) *Int {
_ = in[8] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(in[0])
z[0] = binary.BigEndian.Uint64(in[1:9])
return z
}
func (z *Int) SetBytes17(in []byte) *Int {
_ = in[16] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(in[0])
z[1] = binary.BigEndian.Uint64(in[1:9])
z[0] = binary.BigEndian.Uint64(in[9:17])
return z
}
func (z *Int) SetBytes25(in []byte) *Int {
_ = in[24] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(in[0])
z[2] = binary.BigEndian.Uint64(in[1:9])
z[1] = binary.BigEndian.Uint64(in[9:17])
z[0] = binary.BigEndian.Uint64(in[17:25])
return z
}
func (z *Int) SetBytes2(in []byte) *Int {
_ = in[1] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(binary.BigEndian.Uint16(in[0:2]))
return z
}
func (z *Int) SetBytes10(in []byte) *Int {
_ = in[9] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(binary.BigEndian.Uint16(in[0:2]))
z[0] = binary.BigEndian.Uint64(in[2:10])
return z
}
func (z *Int) SetBytes18(in []byte) *Int {
_ = in[17] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(binary.BigEndian.Uint16(in[0:2]))
z[1] = binary.BigEndian.Uint64(in[2:10])
z[0] = binary.BigEndian.Uint64(in[10:18])
return z
}
func (z *Int) SetBytes26(in []byte) *Int {
_ = in[25] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(binary.BigEndian.Uint16(in[0:2]))
z[2] = binary.BigEndian.Uint64(in[2:10])
z[1] = binary.BigEndian.Uint64(in[10:18])
z[0] = binary.BigEndian.Uint64(in[18:26])
return z
}
func (z *Int) SetBytes3(in []byte) *Int {
_ = in[2] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
return z
}
func (z *Int) SetBytes11(in []byte) *Int {
_ = in[10] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
z[0] = binary.BigEndian.Uint64(in[3:11])
return z
}
func (z *Int) SetBytes19(in []byte) *Int {
_ = in[18] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
z[1] = binary.BigEndian.Uint64(in[3:11])
z[0] = binary.BigEndian.Uint64(in[11:19])
return z
}
func (z *Int) SetBytes27(in []byte) *Int {
_ = in[26] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(binary.BigEndian.Uint16(in[1:3])) | uint64(in[0])<<16
z[2] = binary.BigEndian.Uint64(in[3:11])
z[1] = binary.BigEndian.Uint64(in[11:19])
z[0] = binary.BigEndian.Uint64(in[19:27])
return z
}
func (z *Int) SetBytes4(in []byte) *Int {
_ = in[3] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = uint64(binary.BigEndian.Uint32(in[0:4]))
return z
}
func (z *Int) SetBytes12(in []byte) *Int {
_ = in[11] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = uint64(binary.BigEndian.Uint32(in[0:4]))
z[0] = binary.BigEndian.Uint64(in[4:12])
return z
}
func (z *Int) SetBytes20(in []byte) *Int {
_ = in[19] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = uint64(binary.BigEndian.Uint32(in[0:4]))
z[1] = binary.BigEndian.Uint64(in[4:12])
z[0] = binary.BigEndian.Uint64(in[12:20])
return z
}
func (z *Int) SetBytes28(in []byte) *Int {
_ = in[27] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = uint64(binary.BigEndian.Uint32(in[0:4]))
z[2] = binary.BigEndian.Uint64(in[4:12])
z[1] = binary.BigEndian.Uint64(in[12:20])
z[0] = binary.BigEndian.Uint64(in[20:28])
return z
}
func (z *Int) SetBytes5(in []byte) *Int {
_ = in[4] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = bigEndianUint40(in[0:5])
return z
}
func (z *Int) SetBytes13(in []byte) *Int {
_ = in[12] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = bigEndianUint40(in[0:5])
z[0] = binary.BigEndian.Uint64(in[5:13])
return z
}
func (z *Int) SetBytes21(in []byte) *Int {
_ = in[20] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = bigEndianUint40(in[0:5])
z[1] = binary.BigEndian.Uint64(in[5:13])
z[0] = binary.BigEndian.Uint64(in[13:21])
return z
}
func (z *Int) SetBytes29(in []byte) *Int {
_ = in[28] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = bigEndianUint40(in[0:5])
z[2] = binary.BigEndian.Uint64(in[5:13])
z[1] = binary.BigEndian.Uint64(in[13:21])
z[0] = binary.BigEndian.Uint64(in[21:29])
return z
}
func (z *Int) SetBytes6(in []byte) *Int {
_ = in[5] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = bigEndianUint48(in[0:6])
return z
}
func (z *Int) SetBytes14(in []byte) *Int {
_ = in[13] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = bigEndianUint48(in[0:6])
z[0] = binary.BigEndian.Uint64(in[6:14])
return z
}
func (z *Int) SetBytes22(in []byte) *Int {
_ = in[21] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = bigEndianUint48(in[0:6])
z[1] = binary.BigEndian.Uint64(in[6:14])
z[0] = binary.BigEndian.Uint64(in[14:22])
return z
}
func (z *Int) SetBytes30(in []byte) *Int {
_ = in[29] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = bigEndianUint48(in[0:6])
z[2] = binary.BigEndian.Uint64(in[6:14])
z[1] = binary.BigEndian.Uint64(in[14:22])
z[0] = binary.BigEndian.Uint64(in[22:30])
return z
}
func (z *Int) SetBytes7(in []byte) *Int {
_ = in[6] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2], z[1] = 0, 0, 0
z[0] = bigEndianUint56(in[0:7])
return z
}
func (z *Int) SetBytes15(in []byte) *Int {
_ = in[14] // bounds check hint to compiler; see golang.org/issue/14808
z[3], z[2] = 0, 0
z[1] = bigEndianUint56(in[0:7])
z[0] = binary.BigEndian.Uint64(in[7:15])
return z
}
func (z *Int) SetBytes23(in []byte) *Int {
_ = in[22] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = 0
z[2] = bigEndianUint56(in[0:7])
z[1] = binary.BigEndian.Uint64(in[7:15])
z[0] = binary.BigEndian.Uint64(in[15:23])
return z
}
func (z *Int) SetBytes31(in []byte) *Int {
_ = in[30] // bounds check hint to compiler; see golang.org/issue/14808
z[3] = bigEndianUint56(in[0:7])
z[2] = binary.BigEndian.Uint64(in[7:15])
z[1] = binary.BigEndian.Uint64(in[15:23])
z[0] = binary.BigEndian.Uint64(in[23:31])
return z
}
// Utility methods that are "missing" among the bigEndian.UintXX methods.
func bigEndianUint40(b []byte) uint64 {
_ = b[4] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[4]) | uint64(b[3])<<8 | uint64(b[2])<<16 | uint64(b[1])<<24 |
uint64(b[0])<<32
}
func bigEndianUint48(b []byte) uint64 {
_ = b[5] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[5]) | uint64(b[4])<<8 | uint64(b[3])<<16 | uint64(b[2])<<24 |
uint64(b[1])<<32 | uint64(b[0])<<40
}
func bigEndianUint56(b []byte) uint64 {
_ = b[6] // bounds check hint to compiler; see golang.org/issue/14808
return uint64(b[6]) | uint64(b[5])<<8 | uint64(b[4])<<16 | uint64(b[3])<<24 |
uint64(b[2])<<32 | uint64(b[1])<<40 | uint64(b[0])<<48
}
// MarshalSSZAppend _almost_ implements the fastssz.Marshaler (see below) interface.
// Originally, this method was named `MarshalSSZTo`, and ostensibly implemented the interface.
// However, it was noted (https://github.com/holiman/uint256/issues/170) that the
// actual implementation did not match the intended semantics of the interface: it
// inserted the data instead of appending.
//
// Therefore, the `MarshalSSZTo` has been removed: to force users into making a choice:
// - Use `MarshalSSZAppend`: this is the method that appends to the destination buffer,
// and returns a potentially newly allocated buffer. This method will become `MarshalSSZTo`
// in some future release.
// - Or use `MarshalSSZInto`: this is the original method which places the data into
// the destination buffer, without ever reallocating.
//
// fastssz.Marshaler interface:
//
// https://github.com/ferranbt/fastssz/blob/main/interface.go#L4
// type Marshaler interface {
// MarshalSSZTo(dst []byte) ([]byte, error)
// MarshalSSZ() ([]byte, error)
// SizeSSZ() int
// }
func (z *Int) MarshalSSZAppend(dst []byte) ([]byte, error) {
dst = binary.LittleEndian.AppendUint64(dst, z[0])
dst = binary.LittleEndian.AppendUint64(dst, z[1])
dst = binary.LittleEndian.AppendUint64(dst, z[2])
dst = binary.LittleEndian.AppendUint64(dst, z[3])
return dst, nil
}
// MarshalSSZInto is the first attempt to implement the fastssz.Marshaler interface,
// but which does not obey the intended semantics. See MarshalSSZAppend and
// - https://github.com/holiman/uint256/pull/171
// - https://github.com/holiman/uint256/issues/170
// @deprecated
func (z *Int) MarshalSSZInto(dst []byte) ([]byte, error) {
if len(dst) < 32 {
return nil, fmt.Errorf("%w: have %d, want %d bytes", ErrBadBufferLength, len(dst), 32)
}
binary.LittleEndian.PutUint64(dst[0:8], z[0])
binary.LittleEndian.PutUint64(dst[8:16], z[1])
binary.LittleEndian.PutUint64(dst[16:24], z[2])
binary.LittleEndian.PutUint64(dst[24:32], z[3])
return dst[32:], nil
}
// MarshalSSZ implements the fastssz.Marshaler interface and returns the integer
// marshalled into a newly allocated byte slice.
func (z *Int) MarshalSSZ() ([]byte, error) {
blob, _ := z.MarshalSSZAppend(make([]byte, 0, 32)) // ignore error, cannot fail, surely have 32 byte space in blob
return blob, nil
}
// SizeSSZ implements the fastssz.Marshaler interface and returns the byte size
// of the 256 bit int.
func (*Int) SizeSSZ() int {
return 32
}
// UnmarshalSSZ implements the fastssz.Unmarshaler interface and parses an encoded
// integer into the local struct.
func (z *Int) UnmarshalSSZ(buf []byte) error {
if len(buf) != 32 {
return fmt.Errorf("%w: have %d, want %d bytes", ErrBadEncodedLength, len(buf), 32)
}
z[0] = binary.LittleEndian.Uint64(buf[0:8])
z[1] = binary.LittleEndian.Uint64(buf[8:16])
z[2] = binary.LittleEndian.Uint64(buf[16:24])
z[3] = binary.LittleEndian.Uint64(buf[24:32])
return nil
}
// HashTreeRoot implements the fastssz.HashRoot interface's non-dependent part.
func (z *Int) HashTreeRoot() ([32]byte, error) {
b, _ := z.MarshalSSZAppend(make([]byte, 0, 32)) // ignore error, cannot fail
var hash [32]byte
copy(hash[:], b)
return hash, nil
}
// EncodeRLP implements the rlp.Encoder interface from go-ethereum
// and writes the RLP encoding of z to w.
func (z *Int) EncodeRLP(w io.Writer) error {
if z == nil {
_, err := w.Write([]byte{0x80})
return err
}
nBits := z.BitLen()
if nBits == 0 {
_, err := w.Write([]byte{0x80})
return err
}
if nBits <= 7 {
_, err := w.Write([]byte{byte(z[0])})
return err
}
nBytes := byte((nBits + 7) / 8)
var b [33]byte
binary.BigEndian.PutUint64(b[1:9], z[3])
binary.BigEndian.PutUint64(b[9:17], z[2])
binary.BigEndian.PutUint64(b[17:25], z[1])
binary.BigEndian.PutUint64(b[25:33], z[0])
b[32-nBytes] = 0x80 + nBytes
_, err := w.Write(b[32-nBytes:])
return err
}
// MarshalText implements encoding.TextMarshaler
// MarshalText marshals using the decimal representation (compatible with big.Int)
func (z *Int) MarshalText() ([]byte, error) {
return []byte(z.Dec()), nil
}
// MarshalJSON implements json.Marshaler.
// MarshalJSON marshals using the 'decimal string' representation. This is _not_ compatible
// with big.Int: big.Int marshals into JSON 'native' numeric format.
//
// The JSON native format is, on some platforms, (e.g. javascript), limited to 53-bit large
// integer space. Thus, U256 uses string-format, which is not compatible with
// big.int (big.Int refuses to unmarshal a string representation).
func (z *Int) MarshalJSON() ([]byte, error) {
return []byte(`"` + z.Dec() + `"`), nil
}
// UnmarshalJSON implements json.Unmarshaler. UnmarshalJSON accepts either
// - Quoted string: either hexadecimal OR decimal
// - Not quoted string: only decimal
func (z *Int) UnmarshalJSON(input []byte) error {
if len(input) < 2 || input[0] != '"' || input[len(input)-1] != '"' {
// if not quoted, it must be decimal
return z.SetFromDecimal(string(input))
}
return z.UnmarshalText(input[1 : len(input)-1])
}
// String returns the decimal encoding of b.
func (z *Int) String() string {
return z.Dec()
}
const (
hextable = "0123456789abcdef"
bintable = "\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\x00\x01\x02\x03\x04\x05\x06\a\b\t\xff\xff\xff\xff\xff\xff\xff\n\v\f\r\x0e\x0f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\n\v\f\r\x0e\x0f\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff\xff"
badNibble = 0xff
)
// Hex encodes z in 0x-prefixed hexadecimal form.
func (z *Int) Hex() string {
// This implementation is not optimal, it allocates a full
// 66-byte output buffer which it fills. It could instead allocate a smaller
// buffer, and omit the final crop-stage.
output := make([]byte, 66)
nibbles := (z.BitLen() + 3) / 4 // nibbles [0,64]
if nibbles == 0 {
nibbles = 1
}
// Start with the most significant
zWord := (nibbles - 1) / 16
for i := zWord; i >= 0; i-- {
off := (3 - i) * 16
output[off+2] = hextable[byte(z[i]>>60)&0xf]
output[off+3] = hextable[byte(z[i]>>56)&0xf]
output[off+4] = hextable[byte(z[i]>>52)&0xf]
output[off+5] = hextable[byte(z[i]>>48)&0xf]
output[off+6] = hextable[byte(z[i]>>44)&0xf]
output[off+7] = hextable[byte(z[i]>>40)&0xf]
output[off+8] = hextable[byte(z[i]>>36)&0xf]
output[off+9] = hextable[byte(z[i]>>32)&0xf]
output[off+10] = hextable[byte(z[i]>>28)&0xf]
output[off+11] = hextable[byte(z[i]>>24)&0xf]
output[off+12] = hextable[byte(z[i]>>20)&0xf]
output[off+13] = hextable[byte(z[i]>>16)&0xf]
output[off+14] = hextable[byte(z[i]>>12)&0xf]
output[off+15] = hextable[byte(z[i]>>8)&0xf]
output[off+16] = hextable[byte(z[i]>>4)&0xf]
output[off+17] = hextable[byte(z[i]&0xF)&0xf]
}
output[64-nibbles] = '0'
output[65-nibbles] = 'x'
return string(output[64-nibbles:])
}
// Scan implements the database/sql Scanner interface.
// It decodes a string, because that is what postgres uses for its numeric type
func (dst *Int) Scan(src interface{}) error {
if src == nil {
dst.Clear()
return nil
}
switch src := src.(type) {
case string:
return dst.scanScientificFromString(src)
case []byte:
return dst.scanScientificFromString(string(src))
}
return errors.New("unsupported type")
}
func (dst *Int) scanScientificFromString(src string) error {
if len(src) == 0 {
dst.Clear()
return nil
}
idx := strings.IndexByte(src, 'e')
if idx == -1 {
return dst.SetFromDecimal(src)
}
if err := dst.SetFromDecimal(src[:idx]); err != nil {
return err
}
if src[(idx+1):] == "0" {
return nil
}
exp := new(Int)
if err := exp.SetFromDecimal(src[(idx + 1):]); err != nil {
return err
}
if exp.GtUint64(77) { // 10**78 is larger than 2**256
return ErrBig256Range
}
exp.Exp(NewInt(10), exp)
if _, overflow := dst.MulOverflow(dst, exp); overflow {
return ErrBig256Range
}
return nil
}
// Value implements the database/sql/driver Valuer interface.
// It encodes a base 10 string.
// In Postgres, this will work with both integer and the Numeric/Decimal types
// In MariaDB/MySQL, this will work with the Numeric/Decimal types up to 65 digits, however any more and you should use either VarChar or Char(79)
// In SqLite, use TEXT
func (src *Int) Value() (driver.Value, error) {
return src.Dec(), nil
}
var (
ErrEmptyString = errors.New("empty hex string")
ErrSyntax = errors.New("invalid hex string")
ErrMissingPrefix = errors.New("hex string without 0x prefix")
ErrEmptyNumber = errors.New("hex string \"0x\"")
ErrLeadingZero = errors.New("hex number with leading zero digits")
ErrBig256Range = errors.New("hex number > 256 bits")
ErrBadBufferLength = errors.New("bad ssz buffer length")
ErrBadEncodedLength = errors.New("bad ssz encoded length")
)
func checkNumberS(input string) error {
l := len(input)
if l == 0 {
return ErrEmptyString
}
if l < 2 || input[0] != '0' ||
(input[1] != 'x' && input[1] != 'X') {
return ErrMissingPrefix
}
if l == 2 {
return ErrEmptyNumber
}
if len(input) > 3 && input[2] == '0' {
return ErrLeadingZero
}
return nil
}
|