1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136
|
// Package difflib is a partial port of Python difflib module.
//
// It provides tools to compare sequences of strings and generate textual diffs.
//
// The following class and functions have been ported:
//
// - SequenceMatcher
//
// - unified_diff
//
// - context_diff
//
// Getting unified diffs was the main goal of the port. Keep in mind this code
// is mostly suitable to output text differences in a human friendly way, there
// are no guarantees generated diffs are consumable by patch(1).
package bytes
import (
"bufio"
"bytes"
"errors"
"fmt"
"io"
"strings"
"unicode"
"hash/adler32"
)
func min(a, b int) int {
if a < b {
return a
}
return b
}
func max(a, b int) int {
if a > b {
return a
}
return b
}
func calculateRatio(matches, length int) float64 {
if length > 0 {
return 2.0 * float64(matches) / float64(length)
}
return 1.0
}
func listifyString(str []byte) (lst [][]byte) {
lst = make([][]byte, len(str))
for i := range str {
lst[i] = str[i:i+1]
}
return lst
}
type Match struct {
A int
B int
Size int
}
type OpCode struct {
Tag byte
I1 int
I2 int
J1 int
J2 int
}
type lineHash uint32
func _hash(line []byte) lineHash {
return lineHash(adler32.Checksum(line))
}
// This is essentially a map from lines to line numbers, so that later it can
// be made a bit cleverer than the standard map in that it will not need to
// store copies of the lines.
// It needs to hold a reference to the underlying slice of lines.
type B2J struct {
store map[lineHash] [][]int
b [][]byte
}
type lineType int8
const (
lineNONE lineType = 0
lineNORMAL lineType = 1
lineJUNK lineType = -1
linePOPULAR lineType = -2
)
func (b2j *B2J) _find(line *[]byte) (h lineHash, slotIndex int,
slot []int, lt lineType) {
h = _hash(*line)
for slotIndex, slot = range b2j.store[h] {
// Thanks to the qualities of sha1, the probability of having more than
// one line content with the same hash is very low. Nevertheless, store
// each of them in a different slot, that we can differentiate by
// looking at the line contents in the b slice.
// In place of all the line numbers where the line appears, a slot can
// also contain [lineno, -1] if b[lineno] is junk.
if bytes.Equal(*line, b2j.b[slot[0]]) {
// The content already has a slot in its hash bucket.
if len(slot) == 2 && slot[1] < 0 {
lt = lineType(slot[1])
} else {
lt = lineNORMAL
}
return // every return variable has the correct value
}
}
// The line content still has no slot.
slotIndex = -1
slot = nil
lt = lineNONE
return
}
func newB2J (b [][]byte, isJunk func([]byte) bool, autoJunk bool) *B2J {
b2j := B2J{store: map[lineHash] [][]int{}, b: b}
ntest := len(b)
if autoJunk && ntest >= 200 {
ntest = ntest/100 + 1
}
for lineno, line := range b {
h, slotIndex, slot, lt := b2j._find(&line)
switch lt {
case lineNORMAL:
if len(slot) >= ntest {
b2j.store[h][slotIndex] = []int{slot[0], int(linePOPULAR)}
} else {
b2j.store[h][slotIndex] = append(slot, lineno)
}
case lineNONE:
if isJunk != nil && isJunk(line) {
b2j.store[h] = append(b2j.store[h], []int{lineno, int(lineJUNK)})
} else {
b2j.store[h] = append(b2j.store[h], []int{lineno})
}
default:
}
}
return &b2j
}
func (b2j *B2J) get(line []byte) []int {
_, _, slot, lt := b2j._find(&line)
if lt == lineNORMAL {
return slot
}
return []int{}
}
func (b2j *B2J) isBJunk(line []byte) bool {
_, _, _, lt := b2j._find(&line)
return lt == lineJUNK
}
// SequenceMatcher compares sequence of strings. The basic
// algorithm predates, and is a little fancier than, an algorithm
// published in the late 1980's by Ratcliff and Obershelp under the
// hyperbolic name "gestalt pattern matching". The basic idea is to find
// the longest contiguous matching subsequence that contains no "junk"
// elements (R-O doesn't address junk). The same idea is then applied
// recursively to the pieces of the sequences to the left and to the right
// of the matching subsequence. This does not yield minimal edit
// sequences, but does tend to yield matches that "look right" to people.
//
// SequenceMatcher tries to compute a "human-friendly diff" between two
// sequences. Unlike e.g. UNIX(tm) diff, the fundamental notion is the
// longest *contiguous* & junk-free matching subsequence. That's what
// catches peoples' eyes. The Windows(tm) windiff has another interesting
// notion, pairing up elements that appear uniquely in each sequence.
// That, and the method here, appear to yield more intuitive difference
// reports than does diff. This method appears to be the least vulnerable
// to synching up on blocks of "junk lines", though (like blank lines in
// ordinary text files, or maybe "<P>" lines in HTML files). That may be
// because this is the only method of the 3 that has a *concept* of
// "junk" <wink>.
//
// Timing: Basic R-O is cubic time worst case and quadratic time expected
// case. SequenceMatcher is quadratic time for the worst case and has
// expected-case behavior dependent in a complicated way on how many
// elements the sequences have in common; best case time is linear.
type SequenceMatcher struct {
a [][]byte
b [][]byte
b2j B2J
IsJunk func([]byte) bool
autoJunk bool
matchingBlocks []Match
fullBCount map[lineHash]int
opCodes []OpCode
}
func NewMatcher(a, b [][]byte) *SequenceMatcher {
m := SequenceMatcher{autoJunk: true}
m.SetSeqs(a, b)
return &m
}
func NewMatcherWithJunk(a, b [][]byte, autoJunk bool,
isJunk func([]byte) bool) *SequenceMatcher {
m := SequenceMatcher{IsJunk: isJunk, autoJunk: autoJunk}
m.SetSeqs(a, b)
return &m
}
// Set two sequences to be compared.
func (m *SequenceMatcher) SetSeqs(a, b [][]byte) {
m.SetSeq1(a)
m.SetSeq2(b)
}
// Set the first sequence to be compared. The second sequence to be compared is
// not changed.
//
// SequenceMatcher computes and caches detailed information about the second
// sequence, so if you want to compare one sequence S against many sequences,
// use .SetSeq2(s) once and call .SetSeq1(x) repeatedly for each of the other
// sequences.
//
// See also SetSeqs() and SetSeq2().
func (m *SequenceMatcher) SetSeq1(a [][]byte) {
if &a == &m.a {
return
}
m.a = a
m.matchingBlocks = nil
m.opCodes = nil
}
// Set the second sequence to be compared. The first sequence to be compared is
// not changed.
func (m *SequenceMatcher) SetSeq2(b [][]byte) {
if &b == &m.b {
return
}
m.b = b
m.matchingBlocks = nil
m.opCodes = nil
m.fullBCount = nil
m.chainB()
}
func (m *SequenceMatcher) chainB() {
// Populate line -> index mapping
b2j := *newB2J(m.b, m.IsJunk, m.autoJunk)
m.b2j = b2j
}
// Find longest matching block in a[alo:ahi] and b[blo:bhi].
//
// If IsJunk is not defined:
//
// Return (i,j,k) such that a[i:i+k] is equal to b[j:j+k], where
// alo <= i <= i+k <= ahi
// blo <= j <= j+k <= bhi
// and for all (i',j',k') meeting those conditions,
// k >= k'
// i <= i'
// and if i == i', j <= j'
//
// In other words, of all maximal matching blocks, return one that
// starts earliest in a, and of all those maximal matching blocks that
// start earliest in a, return the one that starts earliest in b.
//
// If IsJunk is defined, first the longest matching block is
// determined as above, but with the additional restriction that no
// junk element appears in the block. Then that block is extended as
// far as possible by matching (only) junk elements on both sides. So
// the resulting block never matches on junk except as identical junk
// happens to be adjacent to an "interesting" match.
//
// If no blocks match, return (alo, blo, 0).
func (m *SequenceMatcher) findLongestMatch(alo, ahi, blo, bhi int) Match {
// CAUTION: stripping common prefix or suffix would be incorrect.
// E.g.,
// ab
// acab
// Longest matching block is "ab", but if common prefix is
// stripped, it's "a" (tied with "b"). UNIX(tm) diff does so
// strip, so ends up claiming that ab is changed to acab by
// inserting "ca" in the middle. That's minimal but unintuitive:
// "it's obvious" that someone inserted "ac" at the front.
// Windiff ends up at the same place as diff, but by pairing up
// the unique 'b's and then matching the first two 'a's.
besti, bestj, bestsize := alo, blo, 0
// find longest junk-free match
// during an iteration of the loop, j2len[j] = length of longest
// junk-free match ending with a[i-1] and b[j]
N := bhi - blo
j2len := make([]int, N)
newj2len := make([]int, N)
var indices []int
for i := alo; i != ahi; i++ {
// look at all instances of a[i] in b; note that because
// b2j has no junk keys, the loop is skipped if a[i] is junk
newindices := m.b2j.get(m.a[i])
for _, j := range newindices {
// a[i] matches b[j]
if j < blo {
continue
}
if j >= bhi {
break
}
k := 1
if j > blo {
k = j2len[j-1-blo] + 1
}
newj2len[j-blo] = k
if k > bestsize {
besti, bestj, bestsize = i-k+1, j-k+1, k
}
}
// j2len = newj2len, clear and reuse j2len as newj2len
for _, j := range indices {
if j < blo {
continue
}
if j >= bhi {
break
}
j2len[j-blo] = 0
}
indices = newindices
j2len, newj2len = newj2len, j2len
}
// Extend the best by non-junk elements on each end. In particular,
// "popular" non-junk elements aren't in b2j, which greatly speeds
// the inner loop above, but also means "the best" match so far
// doesn't contain any junk *or* popular non-junk elements.
for besti > alo && bestj > blo && !m.b2j.isBJunk(m.b[bestj-1]) &&
bytes.Equal(m.a[besti-1], m.b[bestj-1]) {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
!m.b2j.isBJunk(m.b[bestj+bestsize]) &&
bytes.Equal(m.a[besti+bestsize], m.b[bestj+bestsize]) {
bestsize += 1
}
// Now that we have a wholly interesting match (albeit possibly
// empty!), we may as well suck up the matching junk on each
// side of it too. Can't think of a good reason not to, and it
// saves post-processing the (possibly considerable) expense of
// figuring out what to do with it. In the case of an empty
// interesting match, this is clearly the right thing to do,
// because no other kind of match is possible in the regions.
for besti > alo && bestj > blo && m.b2j.isBJunk(m.b[bestj-1]) &&
bytes.Equal(m.a[besti-1], m.b[bestj-1]) {
besti, bestj, bestsize = besti-1, bestj-1, bestsize+1
}
for besti+bestsize < ahi && bestj+bestsize < bhi &&
m.b2j.isBJunk(m.b[bestj+bestsize]) &&
bytes.Equal(m.a[besti+bestsize], m.b[bestj+bestsize]) {
bestsize += 1
}
return Match{A: besti, B: bestj, Size: bestsize}
}
// Return list of triples describing matching subsequences.
//
// Each triple is of the form (i, j, n), and means that
// a[i:i+n] == b[j:j+n]. The triples are monotonically increasing in
// i and in j. It's also guaranteed that if (i, j, n) and (i', j', n') are
// adjacent triples in the list, and the second is not the last triple in the
// list, then i+n != i' or j+n != j'. IOW, adjacent triples never describe
// adjacent equal blocks.
//
// The last triple is a dummy, (len(a), len(b), 0), and is the only
// triple with n==0.
func (m *SequenceMatcher) GetMatchingBlocks() []Match {
if m.matchingBlocks != nil {
return m.matchingBlocks
}
var matchBlocks func(alo, ahi, blo, bhi int, matched []Match) []Match
matchBlocks = func(alo, ahi, blo, bhi int, matched []Match) []Match {
match := m.findLongestMatch(alo, ahi, blo, bhi)
i, j, k := match.A, match.B, match.Size
if match.Size > 0 {
if alo < i && blo < j {
matched = matchBlocks(alo, i, blo, j, matched)
}
matched = append(matched, match)
if i+k < ahi && j+k < bhi {
matched = matchBlocks(i+k, ahi, j+k, bhi, matched)
}
}
return matched
}
matched := matchBlocks(0, len(m.a), 0, len(m.b), nil)
// It's possible that we have adjacent equal blocks in the
// matching_blocks list now.
nonAdjacent := []Match{}
i1, j1, k1 := 0, 0, 0
for _, b := range matched {
// Is this block adjacent to i1, j1, k1?
i2, j2, k2 := b.A, b.B, b.Size
if i1+k1 == i2 && j1+k1 == j2 {
// Yes, so collapse them -- this just increases the length of
// the first block by the length of the second, and the first
// block so lengthened remains the block to compare against.
k1 += k2
} else {
// Not adjacent. Remember the first block (k1==0 means it's
// the dummy we started with), and make the second block the
// new block to compare against.
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
i1, j1, k1 = i2, j2, k2
}
}
if k1 > 0 {
nonAdjacent = append(nonAdjacent, Match{i1, j1, k1})
}
nonAdjacent = append(nonAdjacent, Match{len(m.a), len(m.b), 0})
m.matchingBlocks = nonAdjacent
return m.matchingBlocks
}
// Return list of 5-tuples describing how to turn a into b.
//
// Each tuple is of the form (tag, i1, i2, j1, j2). The first tuple
// has i1 == j1 == 0, and remaining tuples have i1 == the i2 from the
// tuple preceding it, and likewise for j1 == the previous j2.
//
// The tags are characters, with these meanings:
//
// 'r' (replace): a[i1:i2] should be replaced by b[j1:j2]
//
// 'd' (delete): a[i1:i2] should be deleted, j1==j2 in this case.
//
// 'i' (insert): b[j1:j2] should be inserted at a[i1:i1], i1==i2 in this case.
//
// 'e' (equal): a[i1:i2] == b[j1:j2]
func (m *SequenceMatcher) GetOpCodes() []OpCode {
if m.opCodes != nil {
return m.opCodes
}
i, j := 0, 0
matching := m.GetMatchingBlocks()
opCodes := make([]OpCode, 0, len(matching))
for _, m := range matching {
// invariant: we've pumped out correct diffs to change
// a[:i] into b[:j], and the next matching block is
// a[ai:ai+size] == b[bj:bj+size]. So we need to pump
// out a diff to change a[i:ai] into b[j:bj], pump out
// the matching block, and move (i,j) beyond the match
ai, bj, size := m.A, m.B, m.Size
tag := byte(0)
if i < ai && j < bj {
tag = 'r'
} else if i < ai {
tag = 'd'
} else if j < bj {
tag = 'i'
}
if tag > 0 {
opCodes = append(opCodes, OpCode{tag, i, ai, j, bj})
}
i, j = ai+size, bj+size
// the list of matching blocks is terminated by a
// sentinel with size 0
if size > 0 {
opCodes = append(opCodes, OpCode{'e', ai, i, bj, j})
}
}
m.opCodes = opCodes
return m.opCodes
}
// Isolate change clusters by eliminating ranges with no changes.
//
// Return a generator of groups with up to n lines of context.
// Each group is in the same format as returned by GetOpCodes().
func (m *SequenceMatcher) GetGroupedOpCodes(n int) [][]OpCode {
if n < 0 {
n = 3
}
codes := m.GetOpCodes()
if len(codes) == 0 {
codes = []OpCode{OpCode{'e', 0, 1, 0, 1}}
}
// Fixup leading and trailing groups if they show no changes.
if codes[0].Tag == 'e' {
c := codes[0]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[0] = OpCode{c.Tag, max(i1, i2-n), i2, max(j1, j2-n), j2}
}
if codes[len(codes)-1].Tag == 'e' {
c := codes[len(codes)-1]
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
codes[len(codes)-1] = OpCode{c.Tag, i1, min(i2, i1+n), j1, min(j2, j1+n)}
}
nn := n + n
groups := [][]OpCode{}
group := []OpCode{}
for _, c := range codes {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
// End the current group and start a new one whenever
// there is a large range with no changes.
if c.Tag == 'e' && i2-i1 > nn {
group = append(group, OpCode{c.Tag, i1, min(i2, i1+n),
j1, min(j2, j1+n)})
groups = append(groups, group)
group = []OpCode{}
i1, j1 = max(i1, i2-n), max(j1, j2-n)
}
group = append(group, OpCode{c.Tag, i1, i2, j1, j2})
}
if len(group) > 0 && !(len(group) == 1 && group[0].Tag == 'e') {
groups = append(groups, group)
}
return groups
}
// Return a measure of the sequences' similarity (float in [0,1]).
//
// Where T is the total number of elements in both sequences, and
// M is the number of matches, this is 2.0*M / T.
// Note that this is 1 if the sequences are identical, and 0 if
// they have nothing in common.
//
// .Ratio() is expensive to compute if you haven't already computed
// .GetMatchingBlocks() or .GetOpCodes(), in which case you may
// want to try .QuickRatio() or .RealQuickRation() first to get an
// upper bound.
func (m *SequenceMatcher) Ratio() float64 {
matches := 0
for _, m := range m.GetMatchingBlocks() {
matches += m.Size
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() relatively quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute.
func (m *SequenceMatcher) QuickRatio() float64 {
// viewing a and b as multisets, set matches to the cardinality
// of their intersection; this counts the number of matches
// without regard to order, so is clearly an upper bound. We do
// so on hashes of the lines themselves, so this might even be
// greater due hash collisions incurring false positives, but
// we don't care because we want an upper bound anyway.
if m.fullBCount == nil {
m.fullBCount = map[lineHash]int{}
for _, s := range m.b {
h := _hash(s)
m.fullBCount[h] = m.fullBCount[h] + 1
}
}
// avail[x] is the number of times x appears in 'b' less the
// number of times we've seen it in 'a' so far ... kinda
avail := map[lineHash]int{}
matches := 0
for _, s := range m.a {
h := _hash(s)
n, ok := avail[h]
if !ok {
n = m.fullBCount[h]
}
avail[h] = n - 1
if n > 0 {
matches += 1
}
}
return calculateRatio(matches, len(m.a)+len(m.b))
}
// Return an upper bound on ratio() very quickly.
//
// This isn't defined beyond that it is an upper bound on .Ratio(), and
// is faster to compute than either .Ratio() or .QuickRatio().
func (m *SequenceMatcher) RealQuickRatio() float64 {
la, lb := len(m.a), len(m.b)
return calculateRatio(min(la, lb), la+lb)
}
func count_leading(line []byte, ch byte) (count int) {
// Return number of `ch` characters at the start of `line`.
count = 0
n := len(line)
for (count < n) && (line[count] == ch) {
count++
}
return count
}
type DiffLine struct {
Tag byte
Line []byte
}
func NewDiffLine(tag byte, line []byte) (l DiffLine) {
l = DiffLine{}
l.Tag = tag
l.Line = line
return l
}
type Differ struct {
Linejunk func([]byte) bool
Charjunk func([]byte) bool
}
func NewDiffer() *Differ {
return &Differ{}
}
var MINUS = []byte("-")
var SPACE = []byte(" ")
var PLUS = []byte("+")
var CARET = []byte("^")
func (d *Differ) Compare(a [][]byte, b [][]byte) (diffs [][]byte, err error) {
// Compare two sequences of lines; generate the resulting delta.
// Each sequence must contain individual single-line strings ending with
// newlines. Such sequences can be obtained from the `readlines()` method
// of file-like objects. The delta generated also consists of newline-
// terminated strings, ready to be printed as-is via the writeline()
// method of a file-like object.
diffs = [][]byte{}
cruncher := NewMatcherWithJunk(a, b, true, d.Linejunk)
opcodes := cruncher.GetOpCodes()
for _, current := range opcodes {
alo := current.I1
ahi := current.I2
blo := current.J1
bhi := current.J2
var g [][]byte
if current.Tag == 'r' {
g, _ = d.FancyReplace(a, alo, ahi, b, blo, bhi)
} else if current.Tag == 'd' {
g = d.Dump(MINUS, a, alo, ahi)
} else if current.Tag == 'i' {
g = d.Dump(PLUS, b, blo, bhi)
} else if current.Tag == 'e' {
g = d.Dump(SPACE, a, alo, ahi)
} else {
return nil, errors.New(fmt.Sprintf("unknown tag %q", current.Tag))
}
diffs = append(diffs, g...)
}
return diffs, nil
}
func (d *Differ) StructuredDump(tag byte, x [][]byte, low int, high int) (out []DiffLine) {
size := high - low
out = make([]DiffLine, size)
for i := 0; i < size; i++ {
out[i] = NewDiffLine(tag, x[i + low])
}
return out
}
func (d *Differ) Dump(tag []byte, x [][]byte, low int, high int) (out [][]byte) {
// Generate comparison results for a same-tagged range.
sout := d.StructuredDump(tag[0], x, low, high)
out = make([][]byte, len(sout))
var bld bytes.Buffer
bld.Grow(1024)
for i, line := range sout {
bld.Reset()
bld.WriteByte(line.Tag)
bld.Write(SPACE)
bld.Write(line.Line)
out[i] = append(out[i], bld.Bytes()...)
}
return out
}
func (d *Differ) PlainReplace(a [][]byte, alo int, ahi int, b [][]byte, blo int, bhi int) (out [][]byte, err error) {
if !(alo < ahi) || !(blo < bhi) { // assertion
return nil, errors.New("low greater than or equal to high")
}
// dump the shorter block first -- reduces the burden on short-term
// memory if the blocks are of very different sizes
if bhi-blo < ahi-alo {
out = d.Dump(PLUS, b, blo, bhi)
out = append(out, d.Dump(MINUS, a, alo, ahi)...)
} else {
out = d.Dump(MINUS, a, alo, ahi)
out = append(out, d.Dump(PLUS, b, blo, bhi)...)
}
return out, nil
}
func (d *Differ) FancyReplace(a [][]byte, alo int, ahi int, b [][]byte, blo int, bhi int) (out [][]byte, err error) {
// When replacing one block of lines with another, search the blocks
// for *similar* lines; the best-matching pair (if any) is used as a
// synch point, and intraline difference marking is done on the
// similar pair. Lots of work, but often worth it.
// don't synch up unless the lines have a similarity score of at
// least cutoff; best_ratio tracks the best score seen so far
best_ratio := 0.74
cutoff := 0.75
cruncher := NewMatcherWithJunk(a, b, true, d.Charjunk)
eqi := -1 // 1st indices of equal lines (if any)
eqj := -1
out = [][]byte{}
// search for the pair that matches best without being identical
// (identical lines must be junk lines, & we don't want to synch up
// on junk -- unless we have to)
var best_i, best_j int
for j := blo; j < bhi; j++ {
bj := b[j]
cruncher.SetSeq2(listifyString(bj))
for i := alo; i < ahi; i++ {
ai := a[i]
if bytes.Equal(ai, bj) {
if eqi == -1 {
eqi = i
eqj = j
}
continue
}
cruncher.SetSeq1(listifyString(ai))
// computing similarity is expensive, so use the quick
// upper bounds first -- have seen this speed up messy
// compares by a factor of 3.
// note that ratio() is only expensive to compute the first
// time it's called on a sequence pair; the expensive part
// of the computation is cached by cruncher
if cruncher.RealQuickRatio() > best_ratio &&
cruncher.QuickRatio() > best_ratio &&
cruncher.Ratio() > best_ratio {
best_ratio = cruncher.Ratio()
best_i = i
best_j = j
}
}
}
if best_ratio < cutoff {
// no non-identical "pretty close" pair
if eqi == -1 {
// no identical pair either -- treat it as a straight replace
out, _ = d.PlainReplace(a, alo, ahi, b, blo, bhi)
return out, nil
}
// no close pair, but an identical pair -- synch up on that
best_i = eqi
best_j = eqj
best_ratio = 1.0
} else {
// there's a close pair, so forget the identical pair (if any)
eqi = -1
}
// a[best_i] very similar to b[best_j]; eqi is None iff they're not
// identical
// pump out diffs from before the synch point
out = append(out, d.fancyHelper(a, alo, best_i, b, blo, best_j)...)
// do intraline marking on the synch pair
aelt, belt := a[best_i], b[best_j]
if eqi == -1 {
// pump out a '-', '?', '+', '?' quad for the synched lines
var atags, btags []byte
cruncher.SetSeqs(listifyString(aelt), listifyString(belt))
opcodes := cruncher.GetOpCodes()
for _, current := range opcodes {
ai1 := current.I1
ai2 := current.I2
bj1 := current.J1
bj2 := current.J2
la, lb := ai2-ai1, bj2-bj1
if current.Tag == 'r' {
atags = append(atags, bytes.Repeat(CARET, la)...)
btags = append(btags, bytes.Repeat(CARET, lb)...)
} else if current.Tag == 'd' {
atags = append(atags, bytes.Repeat(MINUS, la)...)
} else if current.Tag == 'i' {
btags = append(btags, bytes.Repeat(PLUS, lb)...)
} else if current.Tag == 'e' {
atags = append(atags, bytes.Repeat(SPACE, la)...)
btags = append(btags, bytes.Repeat(SPACE, lb)...)
} else {
return nil, errors.New(fmt.Sprintf("unknown tag %q",
current.Tag))
}
}
out = append(out, d.QFormat(aelt, belt, atags, btags)...)
} else {
// the synch pair is identical
out = append(out, append([]byte{' ', ' '}, aelt...))
}
// pump out diffs from after the synch point
out = append(out, d.fancyHelper(a, best_i+1, ahi, b, best_j+1, bhi)...)
return out, nil
}
func (d *Differ) fancyHelper(a [][]byte, alo int, ahi int, b [][]byte, blo int, bhi int) (out [][]byte) {
if alo < ahi {
if blo < bhi {
out, _ = d.FancyReplace(a, alo, ahi, b, blo, bhi)
} else {
out = d.Dump(MINUS, a, alo, ahi)
}
} else if blo < bhi {
out = d.Dump(PLUS, b, blo, bhi)
} else {
out = [][]byte{}
}
return out
}
func (d *Differ) QFormat(aline []byte, bline []byte, atags []byte, btags []byte) (out [][]byte) {
// Format "?" output and deal with leading tabs.
// Can hurt, but will probably help most of the time.
common := min(count_leading(aline, '\t'), count_leading(bline, '\t'))
common = min(common, count_leading(atags[:common], ' '))
common = min(common, count_leading(btags[:common], ' '))
atags = bytes.TrimRightFunc(atags[common:], unicode.IsSpace)
btags = bytes.TrimRightFunc(btags[common:], unicode.IsSpace)
out = [][]byte{append([]byte("- "), aline...)}
if len(atags) > 0 {
t := make([]byte, 0, len(atags) + common + 3)
t = append(t, []byte("? ")...)
for i := 0; i < common; i++ {
t = append(t, byte('\t'))
}
t = append(t, atags...)
t = append(t, byte('\n'))
out = append(out, t)
}
out = append(out, append([]byte("+ "), bline...))
if len(btags) > 0 {
t := make([]byte, 0, len(btags) + common + 3)
t = append(t, []byte("? ")...)
for i := 0; i < common; i++ {
t = append(t, byte('\t'))
}
t = append(t, btags...)
t = append(t, byte('\n'))
out = append(out, t)
}
return out
}
// Convert range to the "ed" format
func formatRangeUnified(start, stop int) []byte {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 1 {
return []byte(fmt.Sprintf("%d", beginning))
}
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
return []byte(fmt.Sprintf("%d,%d", beginning, length))
}
// Unified diff parameters
type UnifiedDiff struct {
A [][]byte // First sequence lines
FromFile string // First file name
FromDate string // First file time
B [][]byte // Second sequence lines
ToFile string // Second file name
ToDate string // Second file time
Eol []byte // Headers end of line, defaults to LF
Context int // Number of context lines
}
// Compare two sequences of lines; generate the delta as a unified diff.
//
// Unified diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by 'n' which
// defaults to three.
//
// By default, the diff control lines (those with ---, +++, or @@) are
// created with a trailing newline. This is helpful so that inputs
// created from file.readlines() result in diffs that are suitable for
// file.writelines() since both the inputs and outputs have trailing
// newlines.
//
// For inputs that do not have trailing newlines, set the lineterm
// argument to "" so that the output will be uniformly newline free.
//
// The unidiff format normally has a header for filenames and modification
// times. Any or all of these may be specified using strings for
// 'fromfile', 'tofile', 'fromfiledate', and 'tofiledate'.
// The modification times are normally expressed in the ISO 8601 format.
func WriteUnifiedDiff(writer io.Writer, diff UnifiedDiff) error {
//buf := bufio.NewWriter(writer)
//defer buf.Flush()
var bld strings.Builder
bld.Reset()
wf := func(format string, args ...interface{}) error {
_, err := fmt.Fprintf(&bld, format, args...)
return err
}
ws := func(s []byte) error {
_, err := bld.Write(s)
return err
}
if len(diff.Eol) == 0 {
diff.Eol = []byte("\n")
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
err := wf("--- %s%s%s", diff.FromFile, fromDate, diff.Eol)
if err != nil {
return err
}
err = wf("+++ %s%s%s", diff.ToFile, toDate, diff.Eol)
if err != nil {
return err
}
}
}
first, last := g[0], g[len(g)-1]
range1 := formatRangeUnified(first.I1, last.I2)
range2 := formatRangeUnified(first.J1, last.J2)
if err := wf("@@ -%s +%s @@%s", range1, range2, diff.Eol); err != nil {
return err
}
for _, c := range g {
i1, i2, j1, j2 := c.I1, c.I2, c.J1, c.J2
if c.Tag == 'e' {
for _, line := range diff.A[i1:i2] {
if err := ws(SPACE); err != nil {
return err
}
if err := ws(line); err != nil {
return err
}
}
continue
}
if c.Tag == 'r' || c.Tag == 'd' {
for _, line := range diff.A[i1:i2] {
if err := ws(MINUS); err != nil {
return err
}
if err := ws(line); err != nil {
return err
}
}
}
if c.Tag == 'r' || c.Tag == 'i' {
for _, line := range diff.B[j1:j2] {
if err := ws(PLUS); err != nil {
return err
}
if err := ws(line); err != nil {
return err
}
}
}
}
}
buf := bufio.NewWriter(writer)
buf.WriteString(bld.String())
buf.Flush()
return nil
}
// Like WriteUnifiedDiff but returns the diff a []byte.
func GetUnifiedDiffString(diff UnifiedDiff) ([]byte, error) {
w := &bytes.Buffer{}
err := WriteUnifiedDiff(w, diff)
return []byte(w.Bytes()), err
}
// Convert range to the "ed" format.
func formatRangeContext(start, stop int) []byte {
// Per the diff spec at http://www.unix.org/single_unix_specification/
beginning := start + 1 // lines start numbering with one
length := stop - start
if length == 0 {
beginning -= 1 // empty ranges begin at line just before the range
}
if length <= 1 {
return []byte(fmt.Sprintf("%d", beginning))
}
return []byte(fmt.Sprintf("%d,%d", beginning, beginning+length-1))
}
type ContextDiff UnifiedDiff
// Compare two sequences of lines; generate the delta as a context diff.
//
// Context diffs are a compact way of showing line changes and a few
// lines of context. The number of context lines is set by diff.Context
// which defaults to three.
//
// By default, the diff control lines (those with *** or ---) are
// created with a trailing newline.
//
// For inputs that do not have trailing newlines, set the diff.Eol
// argument to "" so that the output will be uniformly newline free.
//
// The context diff format normally has a header for filenames and
// modification times. Any or all of these may be specified using
// strings for diff.FromFile, diff.ToFile, diff.FromDate, diff.ToDate.
// The modification times are normally expressed in the ISO 8601 format.
// If not specified, the strings default to blanks.
func WriteContextDiff(writer io.Writer, diff ContextDiff) error {
buf := bufio.NewWriter(writer)
defer buf.Flush()
var diffErr error
wf := func(format string, args ...interface{}) {
_, err := buf.WriteString(fmt.Sprintf(format, args...))
if diffErr == nil && err != nil {
diffErr = err
}
}
ws := func(s []byte) {
_, err := buf.Write(s)
if diffErr == nil && err != nil {
diffErr = err
}
}
if len(diff.Eol) == 0 {
diff.Eol = []byte("\n")
}
prefix := map[byte][]byte{
'i': []byte("+ "),
'd': []byte("- "),
'r': []byte("! "),
'e': []byte(" "),
}
started := false
m := NewMatcher(diff.A, diff.B)
for _, g := range m.GetGroupedOpCodes(diff.Context) {
if !started {
started = true
fromDate := ""
if len(diff.FromDate) > 0 {
fromDate = "\t" + diff.FromDate
}
toDate := ""
if len(diff.ToDate) > 0 {
toDate = "\t" + diff.ToDate
}
if diff.FromFile != "" || diff.ToFile != "" {
wf("*** %s%s%s", diff.FromFile, fromDate, diff.Eol)
wf("--- %s%s%s", diff.ToFile, toDate, diff.Eol)
}
}
first, last := g[0], g[len(g)-1]
ws([]byte("***************"))
ws(diff.Eol)
range1 := formatRangeContext(first.I1, last.I2)
wf("*** %s ****%s", range1, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'd' {
for _, cc := range g {
if cc.Tag == 'i' {
continue
}
for _, line := range diff.A[cc.I1:cc.I2] {
ws(prefix[cc.Tag])
ws(line)
}
}
break
}
}
range2 := formatRangeContext(first.J1, last.J2)
wf("--- %s ----%s", range2, diff.Eol)
for _, c := range g {
if c.Tag == 'r' || c.Tag == 'i' {
for _, cc := range g {
if cc.Tag == 'd' {
continue
}
for _, line := range diff.B[cc.J1:cc.J2] {
ws(prefix[cc.Tag])
ws(line)
}
}
break
}
}
}
return diffErr
}
// Like WriteContextDiff but returns the diff a []byte.
func GetContextDiffString(diff ContextDiff) ([]byte, error) {
w := &bytes.Buffer{}
err := WriteContextDiff(w, diff)
return []byte(w.Bytes()), err
}
// Split a []byte on "\n" while preserving them. The output can be used
// as input for UnifiedDiff and ContextDiff structures.
func SplitLines(s []byte) [][]byte {
lines := bytes.SplitAfter(s, []byte("\n"))
lines[len(lines)-1] = append(lines[len(lines)-1], '\n')
return lines
}
|