1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
|
package sarama
import (
"container/heap"
"errors"
"fmt"
"math"
"sort"
"strings"
)
const (
// RangeBalanceStrategyName identifies strategies that use the range partition assignment strategy
RangeBalanceStrategyName = "range"
// RoundRobinBalanceStrategyName identifies strategies that use the round-robin partition assignment strategy
RoundRobinBalanceStrategyName = "roundrobin"
// StickyBalanceStrategyName identifies strategies that use the sticky-partition assignment strategy
StickyBalanceStrategyName = "sticky"
defaultGeneration = -1
)
// BalanceStrategyPlan is the results of any BalanceStrategy.Plan attempt.
// It contains an allocation of topic/partitions by memberID in the form of
// a `memberID -> topic -> partitions` map.
type BalanceStrategyPlan map[string]map[string][]int32
// Add assigns a topic with a number partitions to a member.
func (p BalanceStrategyPlan) Add(memberID, topic string, partitions ...int32) {
if len(partitions) == 0 {
return
}
if _, ok := p[memberID]; !ok {
p[memberID] = make(map[string][]int32, 1)
}
p[memberID][topic] = append(p[memberID][topic], partitions...)
}
// --------------------------------------------------------------------
// BalanceStrategy is used to balance topics and partitions
// across members of a consumer group
type BalanceStrategy interface {
// Name uniquely identifies the strategy.
Name() string
// Plan accepts a map of `memberID -> metadata` and a map of `topic -> partitions`
// and returns a distribution plan.
Plan(members map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error)
// AssignmentData returns the serialized assignment data for the specified
// memberID
AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error)
}
// --------------------------------------------------------------------
// NewBalanceStrategyRange returns a range balance strategy,
// which is the default and assigns partitions as ranges to consumer group members.
// This follows the same logic as
// https://kafka.apache.org/31/javadoc/org/apache/kafka/clients/consumer/RangeAssignor.html
//
// Example with two topics T1 and T2 with six partitions each (0..5) and two members (M1, M2):
//
// M1: {T1: [0, 1, 2], T2: [0, 1, 2]}
// M2: {T1: [3, 4, 5], T2: [3, 4, 5]}
func NewBalanceStrategyRange() BalanceStrategy {
return &balanceStrategy{
name: RangeBalanceStrategyName,
coreFn: func(plan BalanceStrategyPlan, memberIDs []string, topic string, partitions []int32) {
partitionsPerConsumer := len(partitions) / len(memberIDs)
consumersWithExtraPartition := len(partitions) % len(memberIDs)
sort.Strings(memberIDs)
for i, memberID := range memberIDs {
min := i*partitionsPerConsumer + int(math.Min(float64(consumersWithExtraPartition), float64(i)))
extra := 0
if i < consumersWithExtraPartition {
extra = 1
}
max := min + partitionsPerConsumer + extra
plan.Add(memberID, topic, partitions[min:max]...)
}
},
}
}
// Deprecated: use NewBalanceStrategyRange to avoid data race issue
var BalanceStrategyRange = NewBalanceStrategyRange()
// NewBalanceStrategySticky returns a sticky balance strategy,
// which assigns partitions to members with an attempt to preserve earlier assignments
// while maintain a balanced partition distribution.
// Example with topic T with six partitions (0..5) and two members (M1, M2):
//
// M1: {T: [0, 2, 4]}
// M2: {T: [1, 3, 5]}
//
// On reassignment with an additional consumer, you might get an assignment plan like:
//
// M1: {T: [0, 2]}
// M2: {T: [1, 3]}
// M3: {T: [4, 5]}
func NewBalanceStrategySticky() BalanceStrategy {
return &stickyBalanceStrategy{}
}
// Deprecated: use NewBalanceStrategySticky to avoid data race issue
var BalanceStrategySticky = NewBalanceStrategySticky()
// --------------------------------------------------------------------
type balanceStrategy struct {
coreFn func(plan BalanceStrategyPlan, memberIDs []string, topic string, partitions []int32)
name string
}
// Name implements BalanceStrategy.
func (s *balanceStrategy) Name() string { return s.name }
// Plan implements BalanceStrategy.
func (s *balanceStrategy) Plan(members map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error) {
// Build members by topic map
mbt := make(map[string][]string)
for memberID, meta := range members {
for _, topic := range meta.Topics {
mbt[topic] = append(mbt[topic], memberID)
}
}
// func to sort and de-duplicate a StringSlice
uniq := func(ss sort.StringSlice) []string {
if ss.Len() < 2 {
return ss
}
sort.Sort(ss)
var i, j int
for i = 1; i < ss.Len(); i++ {
if ss[i] == ss[j] {
continue
}
j++
ss.Swap(i, j)
}
return ss[:j+1]
}
// Assemble plan
plan := make(BalanceStrategyPlan, len(members))
for topic, memberIDs := range mbt {
s.coreFn(plan, uniq(memberIDs), topic, topics[topic])
}
return plan, nil
}
// AssignmentData simple strategies do not require any shared assignment data
func (s *balanceStrategy) AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error) {
return nil, nil
}
type stickyBalanceStrategy struct {
movements partitionMovements
}
// Name implements BalanceStrategy.
func (s *stickyBalanceStrategy) Name() string { return StickyBalanceStrategyName }
// Plan implements BalanceStrategy.
func (s *stickyBalanceStrategy) Plan(members map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error) {
// track partition movements during generation of the partition assignment plan
s.movements = partitionMovements{
Movements: make(map[topicPartitionAssignment]consumerPair),
PartitionMovementsByTopic: make(map[string]map[consumerPair]map[topicPartitionAssignment]bool),
}
// prepopulate the current assignment state from userdata on the consumer group members
currentAssignment, prevAssignment, err := prepopulateCurrentAssignments(members)
if err != nil {
return nil, err
}
// determine if we're dealing with a completely fresh assignment, or if there's existing assignment state
isFreshAssignment := len(currentAssignment) == 0
// create a mapping of all current topic partitions and the consumers that can be assigned to them
partition2AllPotentialConsumers := make(map[topicPartitionAssignment][]string)
for topic, partitions := range topics {
for _, partition := range partitions {
partition2AllPotentialConsumers[topicPartitionAssignment{Topic: topic, Partition: partition}] = []string{}
}
}
// create a mapping of all consumers to all potential topic partitions that can be assigned to them
// also, populate the mapping of partitions to potential consumers
consumer2AllPotentialPartitions := make(map[string][]topicPartitionAssignment, len(members))
for memberID, meta := range members {
consumer2AllPotentialPartitions[memberID] = make([]topicPartitionAssignment, 0)
for _, topicSubscription := range meta.Topics {
// only evaluate topic subscriptions that are present in the supplied topics map
if _, found := topics[topicSubscription]; found {
for _, partition := range topics[topicSubscription] {
topicPartition := topicPartitionAssignment{Topic: topicSubscription, Partition: partition}
consumer2AllPotentialPartitions[memberID] = append(consumer2AllPotentialPartitions[memberID], topicPartition)
partition2AllPotentialConsumers[topicPartition] = append(partition2AllPotentialConsumers[topicPartition], memberID)
}
}
}
// add this consumer to currentAssignment (with an empty topic partition assignment) if it does not already exist
if _, exists := currentAssignment[memberID]; !exists {
currentAssignment[memberID] = make([]topicPartitionAssignment, 0)
}
}
// create a mapping of each partition to its current consumer, where possible
currentPartitionConsumers := make(map[topicPartitionAssignment]string, len(currentAssignment))
unvisitedPartitions := make(map[topicPartitionAssignment]bool, len(partition2AllPotentialConsumers))
for partition := range partition2AllPotentialConsumers {
unvisitedPartitions[partition] = true
}
var unassignedPartitions []topicPartitionAssignment
for memberID, partitions := range currentAssignment {
var keepPartitions []topicPartitionAssignment
for _, partition := range partitions {
// If this partition no longer exists at all, likely due to the
// topic being deleted, we remove the partition from the member.
if _, exists := partition2AllPotentialConsumers[partition]; !exists {
continue
}
delete(unvisitedPartitions, partition)
currentPartitionConsumers[partition] = memberID
if !strsContains(members[memberID].Topics, partition.Topic) {
unassignedPartitions = append(unassignedPartitions, partition)
continue
}
keepPartitions = append(keepPartitions, partition)
}
currentAssignment[memberID] = keepPartitions
}
for unvisited := range unvisitedPartitions {
unassignedPartitions = append(unassignedPartitions, unvisited)
}
// sort the topic partitions in order of priority for reassignment
sortedPartitions := sortPartitions(currentAssignment, prevAssignment, isFreshAssignment, partition2AllPotentialConsumers, consumer2AllPotentialPartitions)
// at this point we have preserved all valid topic partition to consumer assignments and removed
// all invalid topic partitions and invalid consumers. Now we need to assign unassignedPartitions
// to consumers so that the topic partition assignments are as balanced as possible.
// an ascending sorted set of consumers based on how many topic partitions are already assigned to them
sortedCurrentSubscriptions := sortMemberIDsByPartitionAssignments(currentAssignment)
s.balance(currentAssignment, prevAssignment, sortedPartitions, unassignedPartitions, sortedCurrentSubscriptions, consumer2AllPotentialPartitions, partition2AllPotentialConsumers, currentPartitionConsumers)
// Assemble plan
plan := make(BalanceStrategyPlan, len(currentAssignment))
for memberID, assignments := range currentAssignment {
if len(assignments) == 0 {
plan[memberID] = make(map[string][]int32)
} else {
for _, assignment := range assignments {
plan.Add(memberID, assignment.Topic, assignment.Partition)
}
}
}
return plan, nil
}
// AssignmentData serializes the set of topics currently assigned to the
// specified member as part of the supplied balance plan
func (s *stickyBalanceStrategy) AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error) {
return encode(&StickyAssignorUserDataV1{
Topics: topics,
Generation: generationID,
}, nil)
}
func strsContains(s []string, value string) bool {
for _, entry := range s {
if entry == value {
return true
}
}
return false
}
// Balance assignments across consumers for maximum fairness and stickiness.
func (s *stickyBalanceStrategy) balance(currentAssignment map[string][]topicPartitionAssignment, prevAssignment map[topicPartitionAssignment]consumerGenerationPair, sortedPartitions []topicPartitionAssignment, unassignedPartitions []topicPartitionAssignment, sortedCurrentSubscriptions []string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string, currentPartitionConsumer map[topicPartitionAssignment]string) {
initializing := len(sortedCurrentSubscriptions) == 0 || len(currentAssignment[sortedCurrentSubscriptions[0]]) == 0
// assign all unassigned partitions
for _, partition := range unassignedPartitions {
// skip if there is no potential consumer for the partition
if len(partition2AllPotentialConsumers[partition]) == 0 {
continue
}
sortedCurrentSubscriptions = assignPartition(partition, sortedCurrentSubscriptions, currentAssignment, consumer2AllPotentialPartitions, currentPartitionConsumer)
}
// narrow down the reassignment scope to only those partitions that can actually be reassigned
for partition := range partition2AllPotentialConsumers {
if !canTopicPartitionParticipateInReassignment(partition, partition2AllPotentialConsumers) {
sortedPartitions = removeTopicPartitionFromMemberAssignments(sortedPartitions, partition)
}
}
// narrow down the reassignment scope to only those consumers that are subject to reassignment
fixedAssignments := make(map[string][]topicPartitionAssignment)
for memberID := range consumer2AllPotentialPartitions {
if !canConsumerParticipateInReassignment(memberID, currentAssignment, consumer2AllPotentialPartitions, partition2AllPotentialConsumers) {
fixedAssignments[memberID] = currentAssignment[memberID]
delete(currentAssignment, memberID)
sortedCurrentSubscriptions = sortMemberIDsByPartitionAssignments(currentAssignment)
}
}
// create a deep copy of the current assignment so we can revert to it if we do not get a more balanced assignment later
preBalanceAssignment := deepCopyAssignment(currentAssignment)
preBalancePartitionConsumers := make(map[topicPartitionAssignment]string, len(currentPartitionConsumer))
for k, v := range currentPartitionConsumer {
preBalancePartitionConsumers[k] = v
}
reassignmentPerformed := s.performReassignments(sortedPartitions, currentAssignment, prevAssignment, sortedCurrentSubscriptions, consumer2AllPotentialPartitions, partition2AllPotentialConsumers, currentPartitionConsumer)
// if we are not preserving existing assignments and we have made changes to the current assignment
// make sure we are getting a more balanced assignment; otherwise, revert to previous assignment
if !initializing && reassignmentPerformed && getBalanceScore(currentAssignment) >= getBalanceScore(preBalanceAssignment) {
currentAssignment = deepCopyAssignment(preBalanceAssignment)
currentPartitionConsumer = make(map[topicPartitionAssignment]string, len(preBalancePartitionConsumers))
for k, v := range preBalancePartitionConsumers {
currentPartitionConsumer[k] = v
}
}
// add the fixed assignments (those that could not change) back
for consumer, assignments := range fixedAssignments {
currentAssignment[consumer] = assignments
}
}
// NewBalanceStrategyRoundRobin returns a round-robin balance strategy,
// which assigns partitions to members in alternating order.
// For example, there are two topics (t0, t1) and two consumer (m0, m1), and each topic has three partitions (p0, p1, p2):
// M0: [t0p0, t0p2, t1p1]
// M1: [t0p1, t1p0, t1p2]
func NewBalanceStrategyRoundRobin() BalanceStrategy {
return new(roundRobinBalancer)
}
// Deprecated: use NewBalanceStrategyRoundRobin to avoid data race issue
var BalanceStrategyRoundRobin = NewBalanceStrategyRoundRobin()
type roundRobinBalancer struct{}
func (b *roundRobinBalancer) Name() string {
return RoundRobinBalanceStrategyName
}
func (b *roundRobinBalancer) Plan(memberAndMetadata map[string]ConsumerGroupMemberMetadata, topics map[string][]int32) (BalanceStrategyPlan, error) {
if len(memberAndMetadata) == 0 || len(topics) == 0 {
return nil, errors.New("members and topics are not provided")
}
// sort partitions
var topicPartitions []topicAndPartition
for topic, partitions := range topics {
for _, partition := range partitions {
topicPartitions = append(topicPartitions, topicAndPartition{topic: topic, partition: partition})
}
}
sort.SliceStable(topicPartitions, func(i, j int) bool {
pi := topicPartitions[i]
pj := topicPartitions[j]
return pi.comparedValue() < pj.comparedValue()
})
// sort members
var members []memberAndTopic
for memberID, meta := range memberAndMetadata {
m := memberAndTopic{
memberID: memberID,
topics: make(map[string]struct{}),
}
for _, t := range meta.Topics {
m.topics[t] = struct{}{}
}
members = append(members, m)
}
sort.SliceStable(members, func(i, j int) bool {
mi := members[i]
mj := members[j]
return mi.memberID < mj.memberID
})
// assign partitions
plan := make(BalanceStrategyPlan, len(members))
i := 0
n := len(members)
for _, tp := range topicPartitions {
m := members[i%n]
for !m.hasTopic(tp.topic) {
i++
m = members[i%n]
}
plan.Add(m.memberID, tp.topic, tp.partition)
i++
}
return plan, nil
}
func (b *roundRobinBalancer) AssignmentData(memberID string, topics map[string][]int32, generationID int32) ([]byte, error) {
return nil, nil // do nothing for now
}
type topicAndPartition struct {
topic string
partition int32
}
func (tp *topicAndPartition) comparedValue() string {
return fmt.Sprintf("%s-%d", tp.topic, tp.partition)
}
type memberAndTopic struct {
topics map[string]struct{}
memberID string
}
func (m *memberAndTopic) hasTopic(topic string) bool {
_, isExist := m.topics[topic]
return isExist
}
// Calculate the balance score of the given assignment, as the sum of assigned partitions size difference of all consumer pairs.
// A perfectly balanced assignment (with all consumers getting the same number of partitions) has a balance score of 0.
// Lower balance score indicates a more balanced assignment.
func getBalanceScore(assignment map[string][]topicPartitionAssignment) int {
consumer2AssignmentSize := make(map[string]int, len(assignment))
for memberID, partitions := range assignment {
consumer2AssignmentSize[memberID] = len(partitions)
}
var score float64
for memberID, consumerAssignmentSize := range consumer2AssignmentSize {
delete(consumer2AssignmentSize, memberID)
for _, otherConsumerAssignmentSize := range consumer2AssignmentSize {
score += math.Abs(float64(consumerAssignmentSize - otherConsumerAssignmentSize))
}
}
return int(score)
}
// Determine whether the current assignment plan is balanced.
func isBalanced(currentAssignment map[string][]topicPartitionAssignment, allSubscriptions map[string][]topicPartitionAssignment) bool {
sortedCurrentSubscriptions := sortMemberIDsByPartitionAssignments(currentAssignment)
min := len(currentAssignment[sortedCurrentSubscriptions[0]])
max := len(currentAssignment[sortedCurrentSubscriptions[len(sortedCurrentSubscriptions)-1]])
if min >= max-1 {
// if minimum and maximum numbers of partitions assigned to consumers differ by at most one return true
return true
}
// create a mapping from partitions to the consumer assigned to them
allPartitions := make(map[topicPartitionAssignment]string)
for memberID, partitions := range currentAssignment {
for _, partition := range partitions {
if _, exists := allPartitions[partition]; exists {
Logger.Printf("Topic %s Partition %d is assigned more than one consumer", partition.Topic, partition.Partition)
}
allPartitions[partition] = memberID
}
}
// for each consumer that does not have all the topic partitions it can get make sure none of the topic partitions it
// could but did not get cannot be moved to it (because that would break the balance)
for _, memberID := range sortedCurrentSubscriptions {
consumerPartitions := currentAssignment[memberID]
consumerPartitionCount := len(consumerPartitions)
// skip if this consumer already has all the topic partitions it can get
if consumerPartitionCount == len(allSubscriptions[memberID]) {
continue
}
// otherwise make sure it cannot get any more
potentialTopicPartitions := allSubscriptions[memberID]
for _, partition := range potentialTopicPartitions {
if !memberAssignmentsIncludeTopicPartition(currentAssignment[memberID], partition) {
otherConsumer := allPartitions[partition]
otherConsumerPartitionCount := len(currentAssignment[otherConsumer])
if consumerPartitionCount < otherConsumerPartitionCount {
return false
}
}
}
}
return true
}
// Reassign all topic partitions that need reassignment until balanced.
func (s *stickyBalanceStrategy) performReassignments(reassignablePartitions []topicPartitionAssignment, currentAssignment map[string][]topicPartitionAssignment, prevAssignment map[topicPartitionAssignment]consumerGenerationPair, sortedCurrentSubscriptions []string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string, currentPartitionConsumer map[topicPartitionAssignment]string) bool {
reassignmentPerformed := false
modified := false
// repeat reassignment until no partition can be moved to improve the balance
for {
modified = false
// reassign all reassignable partitions (starting from the partition with least potential consumers and if needed)
// until the full list is processed or a balance is achieved
for _, partition := range reassignablePartitions {
if isBalanced(currentAssignment, consumer2AllPotentialPartitions) {
break
}
// the partition must have at least two consumers
if len(partition2AllPotentialConsumers[partition]) <= 1 {
Logger.Printf("Expected more than one potential consumer for partition %s topic %d", partition.Topic, partition.Partition)
}
// the partition must have a consumer
consumer := currentPartitionConsumer[partition]
if consumer == "" {
Logger.Printf("Expected topic %s partition %d to be assigned to a consumer", partition.Topic, partition.Partition)
}
if _, exists := prevAssignment[partition]; exists {
if len(currentAssignment[consumer]) > (len(currentAssignment[prevAssignment[partition].MemberID]) + 1) {
sortedCurrentSubscriptions = s.reassignPartition(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, prevAssignment[partition].MemberID)
reassignmentPerformed = true
modified = true
continue
}
}
// check if a better-suited consumer exists for the partition; if so, reassign it
for _, otherConsumer := range partition2AllPotentialConsumers[partition] {
if len(currentAssignment[consumer]) > (len(currentAssignment[otherConsumer]) + 1) {
sortedCurrentSubscriptions = s.reassignPartitionToNewConsumer(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, consumer2AllPotentialPartitions)
reassignmentPerformed = true
modified = true
break
}
}
}
if !modified {
return reassignmentPerformed
}
}
}
// Identify a new consumer for a topic partition and reassign it.
func (s *stickyBalanceStrategy) reassignPartitionToNewConsumer(partition topicPartitionAssignment, currentAssignment map[string][]topicPartitionAssignment, sortedCurrentSubscriptions []string, currentPartitionConsumer map[topicPartitionAssignment]string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment) []string {
for _, anotherConsumer := range sortedCurrentSubscriptions {
if memberAssignmentsIncludeTopicPartition(consumer2AllPotentialPartitions[anotherConsumer], partition) {
return s.reassignPartition(partition, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer, anotherConsumer)
}
}
return sortedCurrentSubscriptions
}
// Reassign a specific partition to a new consumer
func (s *stickyBalanceStrategy) reassignPartition(partition topicPartitionAssignment, currentAssignment map[string][]topicPartitionAssignment, sortedCurrentSubscriptions []string, currentPartitionConsumer map[topicPartitionAssignment]string, newConsumer string) []string {
consumer := currentPartitionConsumer[partition]
// find the correct partition movement considering the stickiness requirement
partitionToBeMoved := s.movements.getTheActualPartitionToBeMoved(partition, consumer, newConsumer)
return s.processPartitionMovement(partitionToBeMoved, newConsumer, currentAssignment, sortedCurrentSubscriptions, currentPartitionConsumer)
}
// Track the movement of a topic partition after assignment
func (s *stickyBalanceStrategy) processPartitionMovement(partition topicPartitionAssignment, newConsumer string, currentAssignment map[string][]topicPartitionAssignment, sortedCurrentSubscriptions []string, currentPartitionConsumer map[topicPartitionAssignment]string) []string {
oldConsumer := currentPartitionConsumer[partition]
s.movements.movePartition(partition, oldConsumer, newConsumer)
currentAssignment[oldConsumer] = removeTopicPartitionFromMemberAssignments(currentAssignment[oldConsumer], partition)
currentAssignment[newConsumer] = append(currentAssignment[newConsumer], partition)
currentPartitionConsumer[partition] = newConsumer
return sortMemberIDsByPartitionAssignments(currentAssignment)
}
// Determine whether a specific consumer should be considered for topic partition assignment.
func canConsumerParticipateInReassignment(memberID string, currentAssignment map[string][]topicPartitionAssignment, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string) bool {
currentPartitions := currentAssignment[memberID]
currentAssignmentSize := len(currentPartitions)
maxAssignmentSize := len(consumer2AllPotentialPartitions[memberID])
if currentAssignmentSize > maxAssignmentSize {
Logger.Printf("The consumer %s is assigned more partitions than the maximum possible", memberID)
}
if currentAssignmentSize < maxAssignmentSize {
// if a consumer is not assigned all its potential partitions it is subject to reassignment
return true
}
for _, partition := range currentPartitions {
if canTopicPartitionParticipateInReassignment(partition, partition2AllPotentialConsumers) {
return true
}
}
return false
}
// Only consider reassigning those topic partitions that have two or more potential consumers.
func canTopicPartitionParticipateInReassignment(partition topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string) bool {
return len(partition2AllPotentialConsumers[partition]) >= 2
}
// The assignment should improve the overall balance of the partition assignments to consumers.
func assignPartition(partition topicPartitionAssignment, sortedCurrentSubscriptions []string, currentAssignment map[string][]topicPartitionAssignment, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment, currentPartitionConsumer map[topicPartitionAssignment]string) []string {
for _, memberID := range sortedCurrentSubscriptions {
if memberAssignmentsIncludeTopicPartition(consumer2AllPotentialPartitions[memberID], partition) {
currentAssignment[memberID] = append(currentAssignment[memberID], partition)
currentPartitionConsumer[partition] = memberID
break
}
}
return sortMemberIDsByPartitionAssignments(currentAssignment)
}
// Deserialize topic partition assignment data to aid with creation of a sticky assignment.
func deserializeTopicPartitionAssignment(userDataBytes []byte) (StickyAssignorUserData, error) {
userDataV1 := &StickyAssignorUserDataV1{}
if err := decode(userDataBytes, userDataV1, nil); err != nil {
userDataV0 := &StickyAssignorUserDataV0{}
if err := decode(userDataBytes, userDataV0, nil); err != nil {
return nil, err
}
return userDataV0, nil
}
return userDataV1, nil
}
// filterAssignedPartitions returns a map of consumer group members to their list of previously-assigned topic partitions, limited
// to those topic partitions currently reported by the Kafka cluster.
func filterAssignedPartitions(currentAssignment map[string][]topicPartitionAssignment, partition2AllPotentialConsumers map[topicPartitionAssignment][]string) map[string][]topicPartitionAssignment {
assignments := deepCopyAssignment(currentAssignment)
for memberID, partitions := range assignments {
// perform in-place filtering
i := 0
for _, partition := range partitions {
if _, exists := partition2AllPotentialConsumers[partition]; exists {
partitions[i] = partition
i++
}
}
assignments[memberID] = partitions[:i]
}
return assignments
}
func removeTopicPartitionFromMemberAssignments(assignments []topicPartitionAssignment, topic topicPartitionAssignment) []topicPartitionAssignment {
for i, assignment := range assignments {
if assignment == topic {
return append(assignments[:i], assignments[i+1:]...)
}
}
return assignments
}
func memberAssignmentsIncludeTopicPartition(assignments []topicPartitionAssignment, topic topicPartitionAssignment) bool {
for _, assignment := range assignments {
if assignment == topic {
return true
}
}
return false
}
func sortPartitions(currentAssignment map[string][]topicPartitionAssignment, partitionsWithADifferentPreviousAssignment map[topicPartitionAssignment]consumerGenerationPair, isFreshAssignment bool, partition2AllPotentialConsumers map[topicPartitionAssignment][]string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment) []topicPartitionAssignment {
unassignedPartitions := make(map[topicPartitionAssignment]bool, len(partition2AllPotentialConsumers))
for partition := range partition2AllPotentialConsumers {
unassignedPartitions[partition] = true
}
sortedPartitions := make([]topicPartitionAssignment, 0)
if !isFreshAssignment && areSubscriptionsIdentical(partition2AllPotentialConsumers, consumer2AllPotentialPartitions) {
// if this is a reassignment and the subscriptions are identical (all consumers can consumer from all topics)
// then we just need to simply list partitions in a round robin fashion (from consumers with
// most assigned partitions to those with least)
assignments := filterAssignedPartitions(currentAssignment, partition2AllPotentialConsumers)
// use priority-queue to evaluate consumer group members in descending-order based on
// the number of topic partition assignments (i.e. consumers with most assignments first)
pq := make(assignmentPriorityQueue, len(assignments))
i := 0
for consumerID, consumerAssignments := range assignments {
pq[i] = &consumerGroupMember{
id: consumerID,
assignments: consumerAssignments,
}
i++
}
heap.Init(&pq)
// loop until no consumer-group members remain
for pq.Len() != 0 {
member := pq[0]
// partitions that were assigned to a different consumer last time
var prevPartitionIndex int
for i, partition := range member.assignments {
if _, exists := partitionsWithADifferentPreviousAssignment[partition]; exists {
prevPartitionIndex = i
break
}
}
if len(member.assignments) > 0 {
partition := member.assignments[prevPartitionIndex]
sortedPartitions = append(sortedPartitions, partition)
delete(unassignedPartitions, partition)
if prevPartitionIndex == 0 {
member.assignments = member.assignments[1:]
} else {
member.assignments = append(member.assignments[:prevPartitionIndex], member.assignments[prevPartitionIndex+1:]...)
}
heap.Fix(&pq, 0)
} else {
heap.Pop(&pq)
}
}
for partition := range unassignedPartitions {
sortedPartitions = append(sortedPartitions, partition)
}
} else {
// an ascending sorted set of topic partitions based on how many consumers can potentially use them
sortedPartitions = sortPartitionsByPotentialConsumerAssignments(partition2AllPotentialConsumers)
}
return sortedPartitions
}
func sortMemberIDsByPartitionAssignments(assignments map[string][]topicPartitionAssignment) []string {
// sort the members by the number of partition assignments in ascending order
sortedMemberIDs := make([]string, 0, len(assignments))
for memberID := range assignments {
sortedMemberIDs = append(sortedMemberIDs, memberID)
}
sort.SliceStable(sortedMemberIDs, func(i, j int) bool {
ret := len(assignments[sortedMemberIDs[i]]) - len(assignments[sortedMemberIDs[j]])
if ret == 0 {
return sortedMemberIDs[i] < sortedMemberIDs[j]
}
return len(assignments[sortedMemberIDs[i]]) < len(assignments[sortedMemberIDs[j]])
})
return sortedMemberIDs
}
func sortPartitionsByPotentialConsumerAssignments(partition2AllPotentialConsumers map[topicPartitionAssignment][]string) []topicPartitionAssignment {
// sort the members by the number of partition assignments in descending order
sortedPartionIDs := make([]topicPartitionAssignment, len(partition2AllPotentialConsumers))
i := 0
for partition := range partition2AllPotentialConsumers {
sortedPartionIDs[i] = partition
i++
}
sort.Slice(sortedPartionIDs, func(i, j int) bool {
if len(partition2AllPotentialConsumers[sortedPartionIDs[i]]) == len(partition2AllPotentialConsumers[sortedPartionIDs[j]]) {
ret := strings.Compare(sortedPartionIDs[i].Topic, sortedPartionIDs[j].Topic)
if ret == 0 {
return sortedPartionIDs[i].Partition < sortedPartionIDs[j].Partition
}
return ret < 0
}
return len(partition2AllPotentialConsumers[sortedPartionIDs[i]]) < len(partition2AllPotentialConsumers[sortedPartionIDs[j]])
})
return sortedPartionIDs
}
func deepCopyAssignment(assignment map[string][]topicPartitionAssignment) map[string][]topicPartitionAssignment {
m := make(map[string][]topicPartitionAssignment, len(assignment))
for memberID, subscriptions := range assignment {
m[memberID] = append(subscriptions[:0:0], subscriptions...)
}
return m
}
func areSubscriptionsIdentical(partition2AllPotentialConsumers map[topicPartitionAssignment][]string, consumer2AllPotentialPartitions map[string][]topicPartitionAssignment) bool {
curMembers := make(map[string]int)
for _, cur := range partition2AllPotentialConsumers {
if len(curMembers) == 0 {
for _, curMembersElem := range cur {
curMembers[curMembersElem]++
}
continue
}
if len(curMembers) != len(cur) {
return false
}
yMap := make(map[string]int)
for _, yElem := range cur {
yMap[yElem]++
}
for curMembersMapKey, curMembersMapVal := range curMembers {
if yMap[curMembersMapKey] != curMembersMapVal {
return false
}
}
}
curPartitions := make(map[topicPartitionAssignment]int)
for _, cur := range consumer2AllPotentialPartitions {
if len(curPartitions) == 0 {
for _, curPartitionElem := range cur {
curPartitions[curPartitionElem]++
}
continue
}
if len(curPartitions) != len(cur) {
return false
}
yMap := make(map[topicPartitionAssignment]int)
for _, yElem := range cur {
yMap[yElem]++
}
for curMembersMapKey, curMembersMapVal := range curPartitions {
if yMap[curMembersMapKey] != curMembersMapVal {
return false
}
}
}
return true
}
// We need to process subscriptions' user data with each consumer's reported generation in mind
// higher generations overwrite lower generations in case of a conflict
// note that a conflict could exist only if user data is for different generations
func prepopulateCurrentAssignments(members map[string]ConsumerGroupMemberMetadata) (map[string][]topicPartitionAssignment, map[topicPartitionAssignment]consumerGenerationPair, error) {
currentAssignment := make(map[string][]topicPartitionAssignment)
prevAssignment := make(map[topicPartitionAssignment]consumerGenerationPair)
// for each partition we create a sorted map of its consumers by generation
sortedPartitionConsumersByGeneration := make(map[topicPartitionAssignment]map[int]string)
for memberID, meta := range members {
consumerUserData, err := deserializeTopicPartitionAssignment(meta.UserData)
if err != nil {
return nil, nil, err
}
for _, partition := range consumerUserData.partitions() {
if consumers, exists := sortedPartitionConsumersByGeneration[partition]; exists {
if consumerUserData.hasGeneration() {
if _, generationExists := consumers[consumerUserData.generation()]; generationExists {
// same partition is assigned to two consumers during the same rebalance.
// log a warning and skip this record
Logger.Printf("Topic %s Partition %d is assigned to multiple consumers following sticky assignment generation %d", partition.Topic, partition.Partition, consumerUserData.generation())
continue
} else {
consumers[consumerUserData.generation()] = memberID
}
} else {
consumers[defaultGeneration] = memberID
}
} else {
generation := defaultGeneration
if consumerUserData.hasGeneration() {
generation = consumerUserData.generation()
}
sortedPartitionConsumersByGeneration[partition] = map[int]string{generation: memberID}
}
}
}
// prevAssignment holds the prior ConsumerGenerationPair (before current) of each partition
// current and previous consumers are the last two consumers of each partition in the above sorted map
for partition, consumers := range sortedPartitionConsumersByGeneration {
// sort consumers by generation in decreasing order
var generations []int
for generation := range consumers {
generations = append(generations, generation)
}
sort.Sort(sort.Reverse(sort.IntSlice(generations)))
consumer := consumers[generations[0]]
if _, exists := currentAssignment[consumer]; !exists {
currentAssignment[consumer] = []topicPartitionAssignment{partition}
} else {
currentAssignment[consumer] = append(currentAssignment[consumer], partition)
}
// check for previous assignment, if any
if len(generations) > 1 {
prevAssignment[partition] = consumerGenerationPair{
MemberID: consumers[generations[1]],
Generation: generations[1],
}
}
}
return currentAssignment, prevAssignment, nil
}
type consumerGenerationPair struct {
MemberID string
Generation int
}
// consumerPair represents a pair of Kafka consumer ids involved in a partition reassignment.
type consumerPair struct {
SrcMemberID string
DstMemberID string
}
// partitionMovements maintains some data structures to simplify lookup of partition movements among consumers.
type partitionMovements struct {
PartitionMovementsByTopic map[string]map[consumerPair]map[topicPartitionAssignment]bool
Movements map[topicPartitionAssignment]consumerPair
}
func (p *partitionMovements) removeMovementRecordOfPartition(partition topicPartitionAssignment) consumerPair {
pair := p.Movements[partition]
delete(p.Movements, partition)
partitionMovementsForThisTopic := p.PartitionMovementsByTopic[partition.Topic]
delete(partitionMovementsForThisTopic[pair], partition)
if len(partitionMovementsForThisTopic[pair]) == 0 {
delete(partitionMovementsForThisTopic, pair)
}
if len(p.PartitionMovementsByTopic[partition.Topic]) == 0 {
delete(p.PartitionMovementsByTopic, partition.Topic)
}
return pair
}
func (p *partitionMovements) addPartitionMovementRecord(partition topicPartitionAssignment, pair consumerPair) {
p.Movements[partition] = pair
if _, exists := p.PartitionMovementsByTopic[partition.Topic]; !exists {
p.PartitionMovementsByTopic[partition.Topic] = make(map[consumerPair]map[topicPartitionAssignment]bool)
}
partitionMovementsForThisTopic := p.PartitionMovementsByTopic[partition.Topic]
if _, exists := partitionMovementsForThisTopic[pair]; !exists {
partitionMovementsForThisTopic[pair] = make(map[topicPartitionAssignment]bool)
}
partitionMovementsForThisTopic[pair][partition] = true
}
func (p *partitionMovements) movePartition(partition topicPartitionAssignment, oldConsumer, newConsumer string) {
pair := consumerPair{
SrcMemberID: oldConsumer,
DstMemberID: newConsumer,
}
if _, exists := p.Movements[partition]; exists {
// this partition has previously moved
existingPair := p.removeMovementRecordOfPartition(partition)
if existingPair.DstMemberID != oldConsumer {
Logger.Printf("Existing pair DstMemberID %s was not equal to the oldConsumer ID %s", existingPair.DstMemberID, oldConsumer)
}
if existingPair.SrcMemberID != newConsumer {
// the partition is not moving back to its previous consumer
p.addPartitionMovementRecord(partition, consumerPair{
SrcMemberID: existingPair.SrcMemberID,
DstMemberID: newConsumer,
})
}
} else {
p.addPartitionMovementRecord(partition, pair)
}
}
func (p *partitionMovements) getTheActualPartitionToBeMoved(partition topicPartitionAssignment, oldConsumer, newConsumer string) topicPartitionAssignment {
if _, exists := p.PartitionMovementsByTopic[partition.Topic]; !exists {
return partition
}
if _, exists := p.Movements[partition]; exists {
// this partition has previously moved
if oldConsumer != p.Movements[partition].DstMemberID {
Logger.Printf("Partition movement DstMemberID %s was not equal to the oldConsumer ID %s", p.Movements[partition].DstMemberID, oldConsumer)
}
oldConsumer = p.Movements[partition].SrcMemberID
}
partitionMovementsForThisTopic := p.PartitionMovementsByTopic[partition.Topic]
reversePair := consumerPair{
SrcMemberID: newConsumer,
DstMemberID: oldConsumer,
}
if _, exists := partitionMovementsForThisTopic[reversePair]; !exists {
return partition
}
var reversePairPartition topicPartitionAssignment
for otherPartition := range partitionMovementsForThisTopic[reversePair] {
reversePairPartition = otherPartition
}
return reversePairPartition
}
//lint:ignore U1000 // this is used but only in unittests as a helper (which are excluded by the integration build tag)
func (p *partitionMovements) isLinked(src, dst string, pairs []consumerPair, currentPath []string) ([]string, bool) {
if src == dst {
return currentPath, false
}
if len(pairs) == 0 {
return currentPath, false
}
for _, pair := range pairs {
if src == pair.SrcMemberID && dst == pair.DstMemberID {
currentPath = append(currentPath, src, dst)
return currentPath, true
}
}
for _, pair := range pairs {
if pair.SrcMemberID != src {
continue
}
// create a deep copy of the pairs, excluding the current pair
reducedSet := make([]consumerPair, len(pairs)-1)
i := 0
for _, p := range pairs {
if p != pair {
reducedSet[i] = pair
i++
}
}
currentPath = append(currentPath, pair.SrcMemberID)
return p.isLinked(pair.DstMemberID, dst, reducedSet, currentPath)
}
return currentPath, false
}
//lint:ignore U1000 // this is used but only in unittests as a helper (which are excluded by the integration build tag)
func (p *partitionMovements) in(cycle []string, cycles [][]string) bool {
superCycle := make([]string, len(cycle)-1)
for i := 0; i < len(cycle)-1; i++ {
superCycle[i] = cycle[i]
}
superCycle = append(superCycle, cycle...)
for _, foundCycle := range cycles {
if len(foundCycle) == len(cycle) && indexOfSubList(superCycle, foundCycle) != -1 {
return true
}
}
return false
}
//lint:ignore U1000 // this is used but only in unittests as a helper (which are excluded by the integration build tag)
func (p *partitionMovements) hasCycles(pairs []consumerPair) bool {
cycles := make([][]string, 0)
for _, pair := range pairs {
// create a deep copy of the pairs, excluding the current pair
reducedPairs := make([]consumerPair, len(pairs)-1)
i := 0
for _, p := range pairs {
if p != pair {
reducedPairs[i] = pair
i++
}
}
if path, linked := p.isLinked(pair.DstMemberID, pair.SrcMemberID, reducedPairs, []string{pair.SrcMemberID}); linked {
if !p.in(path, cycles) {
cycles = append(cycles, path)
Logger.Printf("A cycle of length %d was found: %v", len(path)-1, path)
}
}
}
// for now we want to make sure there is no partition movements of the same topic between a pair of consumers.
// the odds of finding a cycle among more than two consumers seem to be very low (according to various randomized
// tests with the given sticky algorithm) that it should not worth the added complexity of handling those cases.
for _, cycle := range cycles {
if len(cycle) == 3 {
return true
}
}
return false
}
//lint:ignore U1000 // this is used but only in unittests as a helper (which are excluded by the integration build tag)
func (p *partitionMovements) isSticky() bool {
for topic, movements := range p.PartitionMovementsByTopic {
movementPairs := make([]consumerPair, len(movements))
i := 0
for pair := range movements {
movementPairs[i] = pair
i++
}
if p.hasCycles(movementPairs) {
Logger.Printf("Stickiness is violated for topic %s", topic)
Logger.Printf("Partition movements for this topic occurred among the following consumer pairs: %v", movements)
return false
}
}
return true
}
//lint:ignore U1000 // this is used but only in unittests as a helper (which are excluded by the integration build tag)
func indexOfSubList(source []string, target []string) int {
targetSize := len(target)
maxCandidate := len(source) - targetSize
nextCand:
for candidate := 0; candidate <= maxCandidate; candidate++ {
j := candidate
for i := 0; i < targetSize; i++ {
if target[i] != source[j] {
// Element mismatch, try next cand
continue nextCand
}
j++
}
// All elements of candidate matched target
return candidate
}
return -1
}
type consumerGroupMember struct {
id string
assignments []topicPartitionAssignment
}
// assignmentPriorityQueue is a priority-queue of consumer group members that is sorted
// in descending order (most assignments to least assignments).
type assignmentPriorityQueue []*consumerGroupMember
func (pq assignmentPriorityQueue) Len() int { return len(pq) }
func (pq assignmentPriorityQueue) Less(i, j int) bool {
// order assignment priority queue in descending order using assignment-count/member-id
if len(pq[i].assignments) == len(pq[j].assignments) {
return pq[i].id > pq[j].id
}
return len(pq[i].assignments) > len(pq[j].assignments)
}
func (pq assignmentPriorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *assignmentPriorityQueue) Push(x interface{}) {
member := x.(*consumerGroupMember)
*pq = append(*pq, member)
}
func (pq *assignmentPriorityQueue) Pop() interface{} {
old := *pq
n := len(old)
member := old[n-1]
*pq = old[0 : n-1]
return member
}
|