1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635
|
/*
* Licensed to Derrick R. Burns under one or more
* contributor license agreements. See the NOTICES file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#ifndef TDIGEST2_TDIGEST_H_
#define TDIGEST2_TDIGEST_H_
#include <algorithm>
#include <cfloat>
#include <cmath>
#include <queue>
#include <utility>
#include <vector>
#include <iostream>
// Modifed from original to remove all external depedencies.
#define DLOG(l) std::cerr
#define LOG(l) std::cerr
#define CHECK_LE(x1, x2)
#define CHECK_GT(x1, x2)
#define CHECK_GE(x1, x2)
namespace tdigest {
using Value = double;
using Weight = double;
using Index = size_t;
const size_t kHighWater = 40000;
class Centroid {
public:
Centroid() : Centroid(0.0, 0.0) {}
Centroid(Value mean, Weight weight) : mean_(mean), weight_(weight) {}
inline Value mean() const noexcept { return mean_; }
inline Weight weight() const noexcept { return weight_; }
inline void add(const Centroid& c) {
CHECK_GT(c.weight_, 0);
if( weight_ != 0.0 ) {
weight_ += c.weight_;
mean_ += c.weight_ * (c.mean_ - mean_) / weight_;
} else {
weight_ = c.weight_;
mean_ = c.mean_;
}
}
private:
Value mean_ = 0;
Weight weight_ = 0;
};
struct CentroidList {
CentroidList(const std::vector<Centroid>& s) : iter(s.cbegin()), end(s.cend()) {}
std::vector<Centroid>::const_iterator iter;
std::vector<Centroid>::const_iterator end;
bool advance() { return ++iter != end; }
};
class CentroidListComparator {
public:
CentroidListComparator() {}
bool operator()(const CentroidList& left, const CentroidList& right) const {
return left.iter->mean() > right.iter->mean();
}
};
using CentroidListQueue = std::priority_queue<CentroidList, std::vector<CentroidList>, CentroidListComparator>;
struct CentroidComparator {
bool operator()(const Centroid& a, const Centroid& b) const { return a.mean() < b.mean(); }
};
class TDigest {
class TDigestComparator {
public:
TDigestComparator() {}
bool operator()(const TDigest* left, const TDigest* right) const { return left->totalSize() > right->totalSize(); }
};
using TDigestQueue = std::priority_queue<const TDigest*, std::vector<const TDigest*>, TDigestComparator>;
public:
TDigest() : TDigest(1000) {}
explicit TDigest(Value compression) : TDigest(compression, 0) {}
TDigest(Value compression, Index bufferSize) : TDigest(compression, bufferSize, 0) {}
TDigest(Value compression, Index unmergedSize, Index mergedSize)
: compression_(compression),
maxProcessed_(processedSize(mergedSize, compression)),
maxUnprocessed_(unprocessedSize(unmergedSize, compression)) {
processed_.reserve(maxProcessed_);
unprocessed_.reserve(maxUnprocessed_ + 1);
}
TDigest(std::vector<Centroid>&& processed, std::vector<Centroid>&& unprocessed, Value compression,
Index unmergedSize, Index mergedSize)
: TDigest(compression, unmergedSize, mergedSize) {
processed_ = std::move(processed);
unprocessed_ = std::move(unprocessed);
processedWeight_ = weight(processed_);
unprocessedWeight_ = weight(unprocessed_);
if( processed_.size() > 0 ) {
min_ = std::min(min_, processed_[0].mean());
max_ = std::max(max_, (processed_.cend() - 1)->mean());
}
updateCumulative();
}
static Weight weight(std::vector<Centroid>& centroids) noexcept {
Weight w = 0.0;
for (auto centroid : centroids) {
w += centroid.weight();
}
return w;
}
TDigest& operator=(TDigest&& o) {
compression_ = o.compression_;
maxProcessed_ = o.maxProcessed_;
maxUnprocessed_ = o.maxUnprocessed_;
processedWeight_ = o.processedWeight_;
unprocessedWeight_ = o.unprocessedWeight_;
processed_ = std::move(o.processed_);
unprocessed_ = std::move(o.unprocessed_);
cumulative_ = std::move(o.cumulative_);
min_ = o.min_;
max_ = o.max_;
return *this;
}
TDigest(TDigest&& o)
: TDigest(std::move(o.processed_), std::move(o.unprocessed_), o.compression_, o.maxUnprocessed_,
o.maxProcessed_) {}
static inline Index processedSize(Index size, Value compression) noexcept {
return (size == 0) ? static_cast<Index>(2 * std::ceil(compression)) : size;
}
static inline Index unprocessedSize(Index size, Value compression) noexcept {
return (size == 0) ? static_cast<Index>(8 * std::ceil(compression)) : size;
}
// merge in another t-digest
inline void merge(const TDigest* other) {
std::vector<const TDigest*> others{other};
add(others.cbegin(), others.cend());
}
const std::vector<Centroid>& processed() const { return processed_; }
const std::vector<Centroid>& unprocessed() const { return unprocessed_; }
Index maxUnprocessed() const { return maxUnprocessed_; }
Index maxProcessed() const { return maxProcessed_; }
inline void add(std::vector<const TDigest*> digests) { add(digests.cbegin(), digests.cend()); }
// merge in a vector of tdigests in the most efficient manner possible
// in constant space
// works for any value of kHighWater
void add(std::vector<const TDigest*>::const_iterator iter, std::vector<const TDigest*>::const_iterator end) {
if (iter != end) {
auto size = std::distance(iter, end);
TDigestQueue pq(TDigestComparator{});
for (; iter != end; iter++) {
pq.push((*iter));
}
std::vector<const TDigest*> batch;
batch.reserve(size);
size_t totalSize = 0;
while (!pq.empty()) {
auto td = pq.top();
batch.push_back(td);
pq.pop();
totalSize += td->totalSize();
if (totalSize >= kHighWater || pq.empty()) {
mergeProcessed(batch);
mergeUnprocessed(batch);
processIfNecessary();
batch.clear();
totalSize = 0;
}
}
updateCumulative();
}
}
Weight processedWeight() const { return processedWeight_; }
Weight unprocessedWeight() const { return unprocessedWeight_; }
bool haveUnprocessed() const { return unprocessed_.size() > 0; }
size_t totalSize() const { return processed_.size() + unprocessed_.size(); }
long totalWeight() const { return static_cast<long>(processedWeight_ + unprocessedWeight_); }
// return the cdf on the t-digest
Value cdf(Value x) {
if (haveUnprocessed() || isDirty()) process();
return cdfProcessed(x);
}
bool isDirty() { return processed_.size() > maxProcessed_ || unprocessed_.size() > maxUnprocessed_; }
// return the cdf on the processed values
Value cdfProcessed(Value x) const {
DLOG(INFO) << "cdf value " << x;
DLOG(INFO) << "processed size " << processed_.size();
if (processed_.size() == 0) {
// no data to examin_e
DLOG(INFO) << "no processed values";
return 0.0;
} else if (processed_.size() == 1) {
DLOG(INFO) << "one processed value "
<< " min_ " << min_ << " max_ " << max_;
// exactly one centroid, should have max_==min_
auto width = max_ - min_;
if (x < min_) {
return 0.0;
} else if (x > max_) {
return 1.0;
} else if (x - min_ <= width) {
// min_ and max_ are too close together to do any viable interpolation
return 0.5;
} else {
// interpolate if somehow we have weight > 0 and max_ != min_
return (x - min_) / (max_ - min_);
}
} else {
auto n = processed_.size();
if (x <= min_) {
DLOG(INFO) << "below min_ "
<< " min_ " << min_ << " x " << x;
return 0;
}
if (x >= max_) {
DLOG(INFO) << "above max_ "
<< " max_ " << max_ << " x " << x;
return 1;
}
// check for the left tail
if (x <= mean(0)) {
DLOG(INFO) << "left tail "
<< " min_ " << min_ << " mean(0) " << mean(0) << " x " << x;
// note that this is different than mean(0) > min_ ... this guarantees interpolation works
if (mean(0) - min_ > 0) {
return (x - min_) / (mean(0) - min_) * weight(0) / processedWeight_ / 2.0;
} else {
return 0;
}
}
// and the right tail
if (x >= mean(n - 1)) {
DLOG(INFO) << "right tail"
<< " max_ " << max_ << " mean(n - 1) " << mean(n - 1) << " x " << x;
if (max_ - mean(n - 1) > 0) {
return 1.0 - (max_ - x) / (max_ - mean(n - 1)) * weight(n - 1) / processedWeight_ / 2.0;
} else {
return 1;
}
}
CentroidComparator cc;
auto iter = std::upper_bound(processed_.cbegin(), processed_.cend(), Centroid(x, 0), cc);
auto i = std::distance(processed_.cbegin(), iter);
auto z1 = x - (iter - 1)->mean();
auto z2 = (iter)->mean() - x;
CHECK_LE(0.0, z1);
CHECK_LE(0.0, z2);
DLOG(INFO) << "middle "
<< " z1 " << z1 << " z2 " << z2 << " x " << x;
return weightedAverage(cumulative_[i - 1], z2, cumulative_[i], z1) / processedWeight_;
}
}
// this returns a quantile on the t-digest
Value quantile(Value q) {
if (haveUnprocessed() || isDirty()) process();
return quantileProcessed(q);
}
// this returns a quantile on the currently processed values without changing the t-digest
// the value will not represent the unprocessed values
Value quantileProcessed(Value q) const {
if (q < 0 || q > 1) {
LOG(ERROR) << "q should be in [0,1], got " << q;
return NAN;
}
if (processed_.size() == 0) {
// no sorted means no data, no way to get a quantile
return NAN;
} else if (processed_.size() == 1) {
// with one data point, all quantiles lead to Rome
return mean(0);
}
// we know that there are at least two sorted now
auto n = processed_.size();
// if values were stored in a sorted array, index would be the offset we are Weighterested in
const auto index = q * processedWeight_;
// at the boundaries, we return min_ or max_
if (index < weight(0) / 2.0) {
CHECK_GT(weight(0), 0);
return min_ + 2.0 * index / weight(0) * (mean(0) - min_);
}
auto iter = std::lower_bound(cumulative_.cbegin(), cumulative_.cend(), index);
if (iter + 1 != cumulative_.cend()) {
auto i = std::distance(cumulative_.cbegin(), iter);
auto z1 = index - *(iter - 1);
auto z2 = *(iter)-index;
// LOG(INFO) << "z2 " << z2 << " index " << index << " z1 " << z1;
return weightedAverage(mean(i - 1), z2, mean(i), z1);
}
CHECK_LE(index, processedWeight_);
CHECK_GE(index, processedWeight_ - weight(n - 1) / 2.0);
auto z1 = index - processedWeight_ - weight(n - 1) / 2.0;
auto z2 = weight(n - 1) / 2 - z1;
return weightedAverage(mean(n - 1), z1, max_, z2);
}
Value compression() const { return compression_; }
void add(Value x) { add(x, 1); }
inline void compress() { process(); }
// add a single centroid to the unprocessed vector, processing previously unprocessed sorted if our limit has
// been reached.
inline bool add(Value x, Weight w) {
if (std::isnan(x)) {
return false;
}
unprocessed_.push_back(Centroid(x, w));
unprocessedWeight_ += w;
processIfNecessary();
return true;
}
inline void add(std::vector<Centroid>::const_iterator iter, std::vector<Centroid>::const_iterator end) {
while (iter != end) {
const size_t diff = std::distance(iter, end);
const size_t room = maxUnprocessed_ - unprocessed_.size();
auto mid = iter + std::min(diff, room);
while (iter != mid) unprocessed_.push_back(*(iter++));
if (unprocessed_.size() >= maxUnprocessed_) {
process();
}
}
}
private:
Value compression_;
Value min_ = std::numeric_limits<Value>::max();
Value max_ = std::numeric_limits<Value>::min();
Index maxProcessed_;
Index maxUnprocessed_;
Value processedWeight_ = 0.0;
Value unprocessedWeight_ = 0.0;
std::vector<Centroid> processed_;
std::vector<Centroid> unprocessed_;
std::vector<Weight> cumulative_;
// return mean of i-th centroid
inline Value mean(int i) const noexcept { return processed_[i].mean(); }
// return weight of i-th centroid
inline Weight weight(int i) const noexcept { return processed_[i].weight(); }
// append all unprocessed centroids into current unprocessed vector
void mergeUnprocessed(const std::vector<const TDigest*>& tdigests) {
if (tdigests.size() == 0) return;
size_t total = unprocessed_.size();
for (auto& td : tdigests) {
total += td->unprocessed_.size();
}
unprocessed_.reserve(total);
for (auto& td : tdigests) {
unprocessed_.insert(unprocessed_.end(), td->unprocessed_.cbegin(), td->unprocessed_.cend());
unprocessedWeight_ += td->unprocessedWeight_;
}
}
// merge all processed centroids together into a single sorted vector
void mergeProcessed(const std::vector<const TDigest*>& tdigests) {
if (tdigests.size() == 0) return;
size_t total = 0;
CentroidListQueue pq(CentroidListComparator{});
for (auto& td : tdigests) {
auto& sorted = td->processed_;
auto size = sorted.size();
if (size > 0) {
pq.push(CentroidList(sorted));
total += size;
processedWeight_ += td->processedWeight_;
}
}
if (total == 0) return;
if (processed_.size() > 0) {
pq.push(CentroidList(processed_));
total += processed_.size();
}
std::vector<Centroid> sorted;
LOG(INFO) << "total " << total;
sorted.reserve(total);
while (!pq.empty()) {
auto best = pq.top();
pq.pop();
sorted.push_back(*(best.iter));
if (best.advance()) pq.push(best);
}
processed_ = std::move(sorted);
if( processed_.size() > 0 ) {
min_ = std::min(min_, processed_[0].mean());
max_ = std::max(max_, (processed_.cend() - 1)->mean());
}
}
inline void processIfNecessary() {
if (isDirty()) {
process();
}
}
void updateCumulative() {
const auto n = processed_.size();
cumulative_.clear();
cumulative_.reserve(n + 1);
auto previous = 0.0;
for (Index i = 0; i < n; i++) {
auto current = weight(i);
auto halfCurrent = current / 2.0;
cumulative_.push_back(previous + halfCurrent);
previous = previous + current;
}
cumulative_.push_back(previous);
}
// merges unprocessed_ centroids and processed_ centroids together and processes them
// when complete, unprocessed_ will be empty and processed_ will have at most maxProcessed_ centroids
inline void process() {
CentroidComparator cc;
std::sort(unprocessed_.begin(), unprocessed_.end(), cc);
auto count = unprocessed_.size();
unprocessed_.insert(unprocessed_.end(), processed_.cbegin(), processed_.cend());
std::inplace_merge(unprocessed_.begin(), unprocessed_.begin() + count, unprocessed_.end(), cc);
processedWeight_ += unprocessedWeight_;
unprocessedWeight_ = 0;
processed_.clear();
processed_.push_back(unprocessed_[0]);
Weight wSoFar = unprocessed_[0].weight();
Weight wLimit = processedWeight_ * integratedQ(1.0);
auto end = unprocessed_.end();
for (auto iter = unprocessed_.cbegin() + 1; iter < end; iter++) {
auto& centroid = *iter;
Weight projectedW = wSoFar + centroid.weight();
if (projectedW <= wLimit) {
wSoFar = projectedW;
(processed_.end() - 1)->add(centroid);
} else {
auto k1 = integratedLocation(wSoFar / processedWeight_);
wLimit = processedWeight_ * integratedQ(k1 + 1.0);
wSoFar += centroid.weight();
processed_.emplace_back(centroid);
}
}
unprocessed_.clear();
min_ = std::min(min_, processed_[0].mean());
DLOG(INFO) << "new min_ " << min_;
max_ = std::max(max_, (processed_.cend() - 1)->mean());
DLOG(INFO) << "new max_ " << max_;
updateCumulative();
}
inline int checkWeights() { return checkWeights(processed_, processedWeight_); }
size_t checkWeights(const std::vector<Centroid>& sorted, Value total) {
size_t badWeight = 0;
auto k1 = 0.0;
auto q = 0.0;
for (auto iter = sorted.cbegin(); iter != sorted.cend(); iter++) {
auto w = iter->weight();
auto dq = w / total;
auto k2 = integratedLocation(q + dq);
if (k2 - k1 > 1 && w != 1) {
LOG(WARNING) << "Oversize centroid at " << std::distance(sorted.cbegin(), iter) << " k1 " << k1 << " k2 " << k2
<< " dk " << (k2 - k1) << " w " << w << " q " << q;
badWeight++;
}
if (k2 - k1 > 1.5 && w != 1) {
LOG(ERROR) << "Egregiously Oversize centroid at " << std::distance(sorted.cbegin(), iter) << " k1 " << k1
<< " k2 " << k2 << " dk " << (k2 - k1) << " w " << w << " q " << q;
badWeight++;
}
q += dq;
k1 = k2;
}
return badWeight;
}
/**
* Converts a quantile into a centroid scale value. The centroid scale is nomin_ally
* the number k of the centroid that a quantile point q should belong to. Due to
* round-offs, however, we can't align things perfectly without splitting points
* and sorted. We don't want to do that, so we have to allow for offsets.
* In the end, the criterion is that any quantile range that spans a centroid
* scale range more than one should be split across more than one centroid if
* possible. This won't be possible if the quantile range refers to a single point
* or an already existing centroid.
* <p/>
* This mapping is steep near q=0 or q=1 so each centroid there will correspond to
* less q range. Near q=0.5, the mapping is flatter so that sorted there will
* represent a larger chunk of quantiles.
*
* @param q The quantile scale value to be mapped.
* @return The centroid scale value corresponding to q.
*/
inline Value integratedLocation(Value q) const {
return compression_ * (std::asin(2.0 * q - 1.0) + M_PI / 2) / M_PI;
}
inline Value integratedQ(Value k) const {
return (std::sin(std::min(k, compression_) * M_PI / compression_ - M_PI / 2) + 1) / 2;
}
/**
* Same as {@link #weightedAverageSorted(Value, Value, Value, Value)} but flips
* the order of the variables if <code>x2</code> is greater than
* <code>x1</code>.
*/
static Value weightedAverage(Value x1, Value w1, Value x2, Value w2) {
return (x1 <= x2) ? weightedAverageSorted(x1, w1, x2, w2) : weightedAverageSorted(x2, w2, x1, w1);
}
/**
* Compute the weighted average between <code>x1</code> with a weight of
* <code>w1</code> and <code>x2</code> with a weight of <code>w2</code>.
* This expects <code>x1</code> to be less than or equal to <code>x2</code>
* and is guaranteed to return a number between <code>x1</code> and
* <code>x2</code>.
*/
static Value weightedAverageSorted(Value x1, Value w1, Value x2, Value w2) {
CHECK_LE(x1, x2);
const Value x = (x1 * w1 + x2 * w2) / (w1 + w2);
return std::max(x1, std::min(x, x2));
}
static Value interpolate(Value x, Value x0, Value x1) { return (x - x0) / (x1 - x0); }
/**
* Computes an interpolated value of a quantile that is between two sorted.
*
* Index is the quantile desired multiplied by the total number of samples - 1.
*
* @param index Denormalized quantile desired
* @param previousIndex The denormalized quantile corresponding to the center of the previous centroid.
* @param nextIndex The denormalized quantile corresponding to the center of the following centroid.
* @param previousMean The mean of the previous centroid.
* @param nextMean The mean of the following centroid.
* @return The interpolated mean.
*/
static Value quantile(Value index, Value previousIndex, Value nextIndex, Value previousMean, Value nextMean) {
const auto delta = nextIndex - previousIndex;
const auto previousWeight = (nextIndex - index) / delta;
const auto nextWeight = (index - previousIndex) / delta;
return previousMean * previousWeight + nextMean * nextWeight;
}
};
} // namespace tdigest2
#endif // TDIGEST2_TDIGEST_H_
|