File: quantity.go

package info (click to toggle)
golang-github-intel-goresctrl 0.3.0-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 2,064 kB
  • sloc: makefile: 19; sh: 15
file content (382 lines) | stat: -rw-r--r-- 10,814 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
/*
Copyright 2014 The Kubernetes Authors.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/

package resource

import (
	"errors"
	"math/big"
	"strconv"
	"strings"

	inf "gopkg.in/inf.v0"
)

// Quantity is a fixed-point representation of a number.
// It provides convenient marshaling/unmarshaling in JSON and YAML,
// in addition to String() and AsInt64() accessors.
//
// The serialization format is:
//
// ```
// <quantity>        ::= <signedNumber><suffix>
//
//	(Note that <suffix> may be empty, from the "" case in <decimalSI>.)
//
// <digit>           ::= 0 | 1 | ... | 9
// <digits>          ::= <digit> | <digit><digits>
// <number>          ::= <digits> | <digits>.<digits> | <digits>. | .<digits>
// <sign>            ::= "+" | "-"
// <signedNumber>    ::= <number> | <sign><number>
// <suffix>          ::= <binarySI> | <decimalExponent> | <decimalSI>
// <binarySI>        ::= Ki | Mi | Gi | Ti | Pi | Ei
//
//	(International System of units; See: http://physics.nist.gov/cuu/Units/binary.html)
//
// <decimalSI>       ::= m | "" | k | M | G | T | P | E
//
//	(Note that 1024 = 1Ki but 1000 = 1k; I didn't choose the capitalization.)
//
// <decimalExponent> ::= "e" <signedNumber> | "E" <signedNumber>
// ```
//
// No matter which of the three exponent forms is used, no quantity may represent
// a number greater than 2^63-1 in magnitude, nor may it have more than 3 decimal
// places. Numbers larger or more precise will be capped or rounded up.
// (E.g.: 0.1m will rounded up to 1m.)
// This may be extended in the future if we require larger or smaller quantities.
//
// When a Quantity is parsed from a string, it will remember the type of suffix
// it had, and will use the same type again when it is serialized.
//
// Before serializing, Quantity will be put in "canonical form".
// This means that Exponent/suffix will be adjusted up or down (with a
// corresponding increase or decrease in Mantissa) such that:
//
// - No precision is lost
// - No fractional digits will be emitted
// - The exponent (or suffix) is as large as possible.
//
// The sign will be omitted unless the number is negative.
//
// Examples:
//
// - 1.5 will be serialized as "1500m"
// - 1.5Gi will be serialized as "1536Mi"
//
// Note that the quantity will NEVER be internally represented by a
// floating point number. That is the whole point of this exercise.
//
// Non-canonical values will still parse as long as they are well formed,
// but will be re-emitted in their canonical form. (So always use canonical
// form, or don't diff.)
//
// This format is intended to make it difficult to use these numbers without
// writing some sort of special handling code in the hopes that that will
// cause implementors to also use a fixed point implementation.
//
// +protobuf=true
// +protobuf.embed=string
// +protobuf.options.marshal=false
// +protobuf.options.(gogoproto.goproto_stringer)=false
// +k8s:deepcopy-gen=true
// +k8s:openapi-gen=true
type Quantity struct {
	// i is the quantity in int64 scaled form, if d.Dec == nil
	i int64Amount
	// d is the quantity in inf.Dec form if d.Dec != nil
	d infDecAmount
	// s is the generated value of this quantity to avoid recalculation
	s string

	// Change Format at will. See the comment for Canonicalize for
	// more details.
	Format
}

// Format lists the three possible formattings of a quantity.
type Format string

const (
	DecimalExponent = Format("DecimalExponent") // e.g., 12e6
	BinarySI        = Format("BinarySI")        // e.g., 12Mi (12 * 2^20)
	DecimalSI       = Format("DecimalSI")       // e.g., 12M  (12 * 10^6)
)

const (
	// splitREString is used to separate a number from its suffix; as such,
	// this is overly permissive, but that's OK-- it will be checked later.
	splitREString = "^([+-]?[0-9.]+)([eEinumkKMGTP]*[-+]?[0-9]*)$"
)

var (
	// Errors that could happen while parsing a string.
	ErrFormatWrong = errors.New("quantities must match the regular expression '" + splitREString + "'")
	ErrNumeric     = errors.New("unable to parse numeric part of quantity")
	ErrSuffix      = errors.New("unable to parse quantity's suffix")
)

// parseQuantityString is a fast scanner for quantity values.
func parseQuantityString(str string) (positive bool, value, num, denom, suffix string, err error) {
	positive = true
	pos := 0
	end := len(str)

	// handle leading sign
	if pos < end {
		switch str[0] {
		case '-':
			positive = false
			pos++
		case '+':
			pos++
		}
	}

	// strip leading zeros
Zeroes:
	for i := pos; ; i++ {
		if i >= end {
			num = "0"
			value = num
			return
		}
		switch str[i] {
		case '0':
			pos++
		default:
			break Zeroes
		}
	}

	// extract the numerator
Num:
	for i := pos; ; i++ {
		if i >= end {
			num = str[pos:end]
			value = str[0:end]
			return
		}
		switch str[i] {
		case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
		default:
			num = str[pos:i]
			pos = i
			break Num
		}
	}

	// if we stripped all numerator positions, always return 0
	if len(num) == 0 {
		num = "0"
	}

	// handle a denominator
	if pos < end && str[pos] == '.' {
		pos++
	Denom:
		for i := pos; ; i++ {
			if i >= end {
				denom = str[pos:end]
				value = str[0:end]
				return
			}
			switch str[i] {
			case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
			default:
				denom = str[pos:i]
				pos = i
				break Denom
			}
		}
		// TODO: we currently allow 1.G, but we may not want to in the future.
		// if len(denom) == 0 {
		// 	err = ErrFormatWrong
		// 	return
		// }
	}
	value = str[0:pos]

	// grab the elements of the suffix
	suffixStart := pos
	for i := pos; ; i++ {
		if i >= end {
			suffix = str[suffixStart:end]
			return
		}
		if !strings.ContainsAny(str[i:i+1], "eEinumkKMGTP") {
			pos = i
			break
		}
	}
	if pos < end {
		switch str[pos] {
		case '-', '+':
			pos++
		}
	}
Suffix:
	for i := pos; ; i++ {
		if i >= end {
			suffix = str[suffixStart:end]
			return
		}
		switch str[i] {
		case '0', '1', '2', '3', '4', '5', '6', '7', '8', '9':
		default:
			break Suffix
		}
	}
	// we encountered a non decimal in the Suffix loop, but the last character
	// was not a valid exponent
	err = ErrFormatWrong
	return
}

// ParseQuantity turns str into a Quantity, or returns an error.
func ParseQuantity(str string) (Quantity, error) {
	if len(str) == 0 {
		return Quantity{}, ErrFormatWrong
	}
	if str == "0" {
		return Quantity{Format: DecimalSI, s: str}, nil
	}

	positive, value, num, denom, suf, err := parseQuantityString(str)
	if err != nil {
		return Quantity{}, err
	}

	base, exponent, format, ok := quantitySuffixer.interpret(suffix(suf))
	if !ok {
		return Quantity{}, ErrSuffix
	}

	precision := int32(0)
	scale := int32(0)
	mantissa := int64(1)
	switch format {
	case DecimalExponent, DecimalSI:
		scale = exponent
		precision = maxInt64Factors - int32(len(num)+len(denom))
	case BinarySI:
		scale = 0
		switch {
		case exponent >= 0 && len(denom) == 0:
			// only handle positive binary numbers with the fast path
			mantissa = int64(int64(mantissa) << uint64(exponent))
			// 1Mi (2^20) has ~6 digits of decimal precision, so exponent*3/10 -1 is roughly the precision
			precision = 15 - int32(len(num)) - int32(float32(exponent)*3/10) - 1
		default:
			precision = -1
		}
	}

	if precision >= 0 {
		// if we have a denominator, shift the entire value to the left by the number of places in the
		// denominator
		scale -= int32(len(denom))
		if scale >= int32(Nano) {
			shifted := num + denom

			var value int64
			value, err := strconv.ParseInt(shifted, 10, 64)
			if err != nil {
				return Quantity{}, ErrNumeric
			}
			if result, ok := int64Multiply(value, int64(mantissa)); ok {
				if !positive {
					result = -result
				}
				// if the number is in canonical form, reuse the string
				switch format {
				case BinarySI:
					if exponent%10 == 0 && (value&0x07 != 0) {
						return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
					}
				default:
					if scale%3 == 0 && !strings.HasSuffix(shifted, "000") && shifted[0] != '0' {
						return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format, s: str}, nil
					}
				}
				return Quantity{i: int64Amount{value: result, scale: Scale(scale)}, Format: format}, nil
			}
		}
	}

	amount := new(inf.Dec)
	if _, ok := amount.SetString(value); !ok {
		return Quantity{}, ErrNumeric
	}

	// So that no one but us has to think about suffixes, remove it.
	if base == 10 {
		amount.SetScale(amount.Scale() + Scale(exponent).infScale())
	} else if base == 2 {
		// numericSuffix = 2 ** exponent
		numericSuffix := big.NewInt(1).Lsh(bigOne, uint(exponent))
		ub := amount.UnscaledBig()
		amount.SetUnscaledBig(ub.Mul(ub, numericSuffix))
	}

	// Cap at min/max bounds.
	sign := amount.Sign()
	if sign == -1 {
		amount.Neg(amount)
	}

	// This rounds non-zero values up to the minimum representable value, under the theory that
	// if you want some resources, you should get some resources, even if you asked for way too small
	// of an amount.  Arguably, this should be inf.RoundHalfUp (normal rounding), but that would have
	// the side effect of rounding values < .5n to zero.
	if v, ok := amount.Unscaled(); v != int64(0) || !ok {
		amount.Round(amount, Nano.infScale(), inf.RoundUp)
	}

	// The max is just a simple cap.
	// TODO: this prevents accumulating quantities greater than int64, for instance quota across a cluster
	if format == BinarySI && amount.Cmp(maxAllowed.Dec) > 0 {
		amount.Set(maxAllowed.Dec)
	}

	if format == BinarySI && amount.Cmp(decOne) < 0 && amount.Cmp(decZero) > 0 {
		// This avoids rounding and hopefully confusion, too.
		format = DecimalSI
	}
	if sign == -1 {
		amount.Neg(amount)
	}

	return Quantity{d: infDecAmount{amount}, Format: format}, nil
}

// Value returns the unscaled value of q rounded up to the nearest integer away from 0.
func (q *Quantity) Value() int64 {
	return q.ScaledValue(0)
}

// ScaledValue returns the value of ceil(q / 10^scale).
// For example, NewQuantity(1, DecimalSI).ScaledValue(Milli) returns 1000.
// This could overflow an int64.
// To detect overflow, call Value() first and verify the expected magnitude.
func (q *Quantity) ScaledValue(scale Scale) int64 {
	if q.d.Dec == nil {
		i, _ := q.i.AsScaledInt64(scale)
		return i
	}
	dec := q.d.Dec
	return scaledValue(dec.UnscaledBig(), int(dec.Scale()), int(scale.infScale()))
}