1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
// package vt100 implements a quick-and-dirty programmable ANSI terminal emulator.
//
// You could, for example, use it to run a program like nethack that expects
// a terminal as a subprocess. It tracks the position of the cursor,
// colors, and various other aspects of the terminal's state, and
// allows you to inspect them.
//
// We do very much mean the dirty part. It's not that we think it might have
// bugs. It's that we're SURE it does. Currently, we only handle raw mode, with no
// cooked mode features like scrolling. We also misinterpret some of the control
// codes, which may or may not matter for your purpose.
package vt100
import (
"bytes"
"fmt"
"image/color"
"sort"
"strings"
)
type Intensity int
const (
Normal Intensity = 0
Bright = 1
Dim = 2
// TODO(jaguilar): Should this be in a subpackage, since the names are pretty collide-y?
)
var (
// Technically RGBAs are supposed to be premultiplied. But CSS doesn't expect them
// that way, so we won't do it in this file.
DefaultColor = color.RGBA{0, 0, 0, 0}
// Our black has 255 alpha, so it will compare negatively with DefaultColor.
Black = color.RGBA{0, 0, 0, 255}
Red = color.RGBA{255, 0, 0, 255}
Green = color.RGBA{0, 255, 0, 255}
Yellow = color.RGBA{255, 255, 0, 255}
Blue = color.RGBA{0, 0, 255, 255}
Magenta = color.RGBA{255, 0, 255, 255}
Cyan = color.RGBA{0, 255, 255, 255}
White = color.RGBA{255, 255, 255, 255}
)
func (i Intensity) alpha() uint8 {
switch i {
case Bright:
return 255
case Normal:
return 170
case Dim:
return 85
default:
panic(fmt.Errorf("unknown intensity: %d", uint8(i)))
}
}
// Format represents the display format of text on a terminal.
type Format struct {
// Fg is the foreground color.
Fg color.RGBA
// Bg is the background color.
Bg color.RGBA
// Intensity is the text intensity (bright, normal, dim).
Intensity Intensity
// Various text properties.
Underscore, Conceal, Negative, Blink, Inverse bool
}
func toCss(c color.RGBA) string {
return fmt.Sprintf("rgba(%d, %d, %d, %f)", c.R, c.G, c.B, float32(c.A)/255)
}
func (f Format) css() string {
parts := make([]string, 0)
fg, bg := f.Fg, f.Bg
if f.Inverse {
bg, fg = fg, bg
}
if f.Intensity != Normal {
// Intensity only applies to the text -- i.e., the foreground.
fg.A = f.Intensity.alpha()
}
if fg != DefaultColor {
parts = append(parts, "color:"+toCss(fg))
}
if bg != DefaultColor {
parts = append(parts, "background-color:"+toCss(bg))
}
if f.Underscore {
parts = append(parts, "text-decoration:underline")
}
if f.Conceal {
parts = append(parts, "display:none")
}
if f.Blink {
parts = append(parts, "text-decoration:blink")
}
// We're not in performance sensitive code. Although this sort
// isn't strictly necessary, it gives us the nice property that
// the style of a particular set of attributes will always be
// generated the same way. As a result, we can use the html
// output in tests.
sort.StringSlice(parts).Sort()
return strings.Join(parts, ";")
}
// Cursor represents both the position and text type of the cursor.
type Cursor struct {
// Y and X are the coordinates.
Y, X int
// F is the format that will be displayed.
F Format
}
// VT100 represents a simplified, raw VT100 terminal.
type VT100 struct {
// Height and Width are the dimensions of the terminal.
Height, Width int
// Content is the text in the terminal.
Content [][]rune
// Format is the display properties of each cell.
Format [][]Format
// Cursor is the current state of the cursor.
Cursor Cursor
// savedCursor is the state of the cursor last time save() was called.
savedCursor Cursor
}
// NewVT100 creates a new VT100 object with the specified dimensions. y and x
// must both be greater than zero.
//
// Each cell is set to contain a ' ' rune, and all formats are left as the
// default.
func NewVT100(y, x int) *VT100 {
if y == 0 || x == 0 {
panic(fmt.Errorf("invalid dim (%d, %d)", y, x))
}
v := &VT100{
Height: y,
Width: x,
Content: make([][]rune, y),
Format: make([][]Format, y),
}
for row := 0; row < y; row++ {
v.Content[row] = make([]rune, x)
v.Format[row] = make([]Format, x)
for col := 0; col < x; col++ {
v.clear(row, col)
}
}
return v
}
// Process handles a single ANSI terminal command, updating the terminal
// appropriately.
//
// One special kind of error that this can return is an UnsupportedError. It's
// probably best to check for these and skip, because they are likely recoverable.
// Support errors are exported as expvars, so it is possibly not necessary to log
// them. If you want to check what's failed, start a debug http server and examine
// the vt100-unsupported-commands field in /debug/vars.
func (v *VT100) Process(c Command) error {
return c.display(v)
}
// HTML renders v as an HTML fragment. One idea for how to use this is to debug
// the current state of the screen reader.
func (v *VT100) HTML() string {
var buf bytes.Buffer
buf.WriteString(`<pre style="color:white;background-color:black;">`)
// Iterate each row. When the css changes, close the previous span, and open
// a new one. No need to close a span when the css is empty, we won't have
// opened one in the past.
var lastFormat Format
for y, row := range v.Content {
for x, r := range row {
f := v.Format[y][x]
if f != lastFormat {
if lastFormat != (Format{}) {
buf.WriteString("</span>")
}
if f != (Format{}) {
buf.WriteString(`<span style="` + f.css() + `">`)
}
lastFormat = f
}
if s := maybeEscapeRune(r); s != "" {
buf.WriteString(s)
} else {
buf.WriteRune(r)
}
}
buf.WriteRune('\n')
}
buf.WriteString("</pre>")
return buf.String()
}
// maybeEscapeRune potentially escapes a rune for display in an html document.
// It only escapes the things that html.EscapeString does, but it works without allocating
// a string to hold r. Returns an empty string if there is no need to escape.
func maybeEscapeRune(r rune) string {
switch r {
case '&':
return "&"
case '\'':
return "'"
case '<':
return "<"
case '>':
return ">"
case '"':
return """
}
return ""
}
// put puts r onto the current cursor's position, then advances the cursor.
func (v *VT100) put(r rune) {
v.Content[v.Cursor.Y][v.Cursor.X] = r
v.Format[v.Cursor.Y][v.Cursor.X] = v.Cursor.F
v.advance()
}
// advance advances the cursor, wrapping to the next line if need be.
func (v *VT100) advance() {
v.Cursor.X++
if v.Cursor.X >= v.Width {
v.Cursor.X = 0
v.Cursor.Y++
}
if v.Cursor.Y >= v.Height {
// TODO(jaguilar): if we implement scroll, this should probably scroll.
v.Cursor.Y = 0
}
}
// home moves the cursor to the coordinates y x. If y x are out of bounds, v.Err
// is set.
func (v *VT100) home(y, x int) {
v.Cursor.Y, v.Cursor.X = y, x
}
// eraseDirection is the logical direction in which an erase command happens,
// from the cursor. For both erase commands, forward is 0, backward is 1,
// and everything is 2.
type eraseDirection int
const (
// From the cursor to the end, inclusive.
eraseForward eraseDirection = iota
// From the beginning to the cursor, inclusive.
eraseBack
// Everything.
eraseAll
)
// eraseColumns erases columns from the current line.
func (v *VT100) eraseColumns(d eraseDirection) {
y, x := v.Cursor.Y, v.Cursor.X // Aliases for simplicity.
switch d {
case eraseBack:
v.eraseRegion(y, 0, y, x)
case eraseForward:
v.eraseRegion(y, x, y, v.Width-1)
case eraseAll:
v.eraseRegion(y, 0, y, v.Width-1)
}
}
// eraseLines erases lines from the current terminal. Note that
// no matter what is selected, the entire current line is erased.
func (v *VT100) eraseLines(d eraseDirection) {
y := v.Cursor.Y // Alias for simplicity.
switch d {
case eraseBack:
v.eraseRegion(0, 0, y, v.Width-1)
case eraseForward:
v.eraseRegion(y, 0, v.Height-1, v.Width-1)
case eraseAll:
v.eraseRegion(0, 0, v.Height-1, v.Width-1)
}
}
func (v *VT100) eraseRegion(y1, x1, y2, x2 int) {
// Do not sanitize or bounds-check these coordinates, since they come from the
// programmer (me). We should panic if any of them are out of bounds.
if y1 > y2 {
y1, y2 = y2, y1
}
if x1 > x2 {
x1, x2 = x2, x1
}
for y := y1; y <= y2; y++ {
for x := x1; x <= x2; x++ {
v.clear(y, x)
}
}
}
func (v *VT100) clear(y, x int) {
v.Content[y][x] = ' '
v.Format[y][x] = Format{}
}
func (v *VT100) backspace() {
v.Cursor.X--
if v.Cursor.X < 0 {
if v.Cursor.Y == 0 {
v.Cursor.X = 0
} else {
v.Cursor.Y--
v.Cursor.X = v.Width - 1
}
}
}
func (v *VT100) save() {
v.savedCursor = v.Cursor
}
func (v *VT100) unsave() {
v.Cursor = v.savedCursor
}
|