File: ipcrypt.go

package info (click to toggle)
golang-github-jedisct1-go-ipcrypt 0.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 124 kB
  • sloc: makefile: 2
file content (548 lines) | stat: -rw-r--r-- 15,290 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
// Package ipcrypt implements IP address encryption and obfuscation methods.
// It provides three encryption modes:
//   - ipcrypt-deterministic: A deterministic mode where the same input always produces the same output
//   - ipcrypt-nd: A non-deterministic mode that uses an 8-byte tweak
//   - ipcrypt-ndx: An extended non-deterministic mode that uses a 32-byte key and 16-byte tweak
//
// For non-deterministic modes, passing nil as the tweak parameter will automatically generate a random tweak.
package ipcrypt

import (
	"crypto/aes"
	"crypto/rand"
	"crypto/subtle"
	"errors"
	"fmt"
	"net"
)

// Key sizes for different encryption modes
const (
	KeySizeDeterministic = 16 // Size in bytes of the key for ipcrypt-deterministic mode
	KeySizeND            = 16 // Size in bytes of the key for ipcrypt-nd mode
	KeySizeNDX           = 32 // Size in bytes of the key for ipcrypt-ndx mode
)

// Tweak sizes for different encryption modes
const (
	TweakSize  = 8  // Size in bytes of the tweak for ipcrypt-nd mode
	TweakSizeX = 16 // Size in bytes of the tweak for ipcrypt-ndx mode
)

// Error definitions for the package
var (
	ErrInvalidKeySize = errors.New("invalid key size")
	ErrInvalidIP      = errors.New("invalid IP address")
	ErrInvalidTweak   = errors.New("invalid tweak size")
)

// Utility functions

// validateKey checks if the key length matches the expected size
func validateKey(key []byte, expectedSize int) error {
	if len(key) != expectedSize {
		return fmt.Errorf("%w: got %d bytes, want %d bytes", ErrInvalidKeySize, len(key), expectedSize)
	}
	return nil
}

// validateIP ensures the IP address is valid and can be converted to 16-byte form
func validateIP(ip net.IP) ([]byte, error) {
	if ip == nil {
		return nil, ErrInvalidIP
	}
	ip16 := ip.To16()
	if ip16 == nil {
		return nil, ErrInvalidIP
	}
	return ip16, nil
}

// validateTweak checks if the tweak length matches the expected size
func validateTweak(tweak []byte, expectedSize int) error {
	if len(tweak) != expectedSize {
		return fmt.Errorf("%w: got %d bytes, want %d bytes", ErrInvalidTweak, len(tweak), expectedSize)
	}
	return nil
}

// xorBytes performs XOR operation on two byte slices of equal length
func xorBytes(a, b []byte) []byte {
	if len(a) != len(b) {
		return nil
	}
	c := make([]byte, len(a))
	subtle.XORBytes(c, a, b)
	return c
}

// Deterministic mode functions

// EncryptIP encrypts an IP address using ipcrypt-deterministic mode.
// The key must be exactly KeySizeDeterministic bytes long.
// Returns the encrypted IP address as a net.IP.
func EncryptIP(key []byte, ip net.IP) (net.IP, error) {
	if err := validateKey(key, KeySizeDeterministic); err != nil {
		return nil, err
	}

	ipBytes, err := validateIP(ip)
	if err != nil {
		return nil, err
	}

	block, err := aes.NewCipher(key)
	if err != nil {
		return nil, fmt.Errorf("failed to create cipher: %w", err)
	}

	encrypted := make([]byte, 16)
	block.Encrypt(encrypted, ipBytes)

	return net.IP(encrypted), nil
}

// DecryptIP decrypts an IP address that was encrypted using ipcrypt-deterministic mode.
// The key must be exactly KeySizeDeterministic bytes long.
// Returns the decrypted IP address as a net.IP.
func DecryptIP(key []byte, encrypted net.IP) (net.IP, error) {
	if err := validateKey(key, KeySizeDeterministic); err != nil {
		return nil, err
	}

	ipBytes, err := validateIP(encrypted)
	if err != nil {
		return nil, err
	}

	block, err := aes.NewCipher(key)
	if err != nil {
		return nil, fmt.Errorf("failed to create cipher: %w", err)
	}

	decrypted := make([]byte, 16)
	block.Decrypt(decrypted, ipBytes)

	return net.IP(decrypted), nil
}

// Non-deterministic mode functions

// EncryptIPNonDeterministic encrypts an IP address using ipcrypt-nd mode.
// The key must be exactly KeySizeND bytes long.
// If tweak is nil, a random tweak will be generated.
// Returns a byte slice containing the tweak concatenated with the encrypted IP.
func EncryptIPNonDeterministic(ip string, key []byte, tweak []byte) ([]byte, error) {
	if err := validateKey(key, KeySizeND); err != nil {
		return nil, err
	}

	ipBytes, err := validateIP(net.ParseIP(ip))
	if err != nil {
		return nil, err
	}

	var t []byte
	if tweak == nil {
		t = make([]byte, TweakSize)
		if _, err := rand.Read(t); err != nil {
			return nil, fmt.Errorf("failed to generate tweak: %w", err)
		}
	} else {
		if err := validateTweak(tweak, TweakSize); err != nil {
			return nil, err
		}
		t = tweak
	}

	encrypted, err := KiasuBCEncrypt(key, t, ipBytes)
	if err != nil {
		return nil, err
	}

	result := make([]byte, TweakSize+16)
	copy(result[:TweakSize], t)
	copy(result[TweakSize:], encrypted)
	return result, nil
}

// DecryptIPNonDeterministic decrypts an IP address that was encrypted using ipcrypt-nd mode.
// The key must be exactly KeySizeND bytes long.
// Returns the decrypted IP address as a string.
func DecryptIPNonDeterministic(ciphertext []byte, key []byte) (string, error) {
	if err := validateKey(key, KeySizeND); err != nil {
		return "", err
	}

	if len(ciphertext) != TweakSize+16 {
		return "", fmt.Errorf("invalid ciphertext length: got %d, want %d", len(ciphertext), TweakSize+16)
	}

	tweak := ciphertext[:TweakSize]
	encryptedIP := ciphertext[TweakSize:]

	decrypted, err := KiasuBCDecrypt(key, tweak, encryptedIP)
	if err != nil {
		return "", err
	}

	return net.IP(decrypted).String(), nil
}

// Prefix-preserving mode functions

// EncryptIPPfx encrypts an IP address using ipcrypt-pfx mode.
// The key must be exactly 32 bytes long (split into two AES-128 keys).
// Returns the encrypted IP address maintaining the original format (IPv4 or IPv6).
func EncryptIPPfx(ip net.IP, key []byte) (net.IP, error) {
	if len(key) != 32 {
		return nil, fmt.Errorf("%w: got %d bytes, want 32 bytes", ErrInvalidKeySize, len(key))
	}

	// Split the key into two AES-128 keys
	k1 := key[:16]
	k2 := key[16:32]

	// Check that K1 and K2 are different
	if subtle.ConstantTimeCompare(k1, k2) == 1 {
		return nil, errors.New("the two halves of the key must be different")
	}

	// Convert IP to 16-byte representation
	ipBytes, err := validateIP(ip)
	if err != nil {
		return nil, err
	}

	// Create AES cipher objects
	cipher1, err := aes.NewCipher(k1)
	if err != nil {
		return nil, fmt.Errorf("failed to create first cipher: %w", err)
	}

	cipher2, err := aes.NewCipher(k2)
	if err != nil {
		return nil, fmt.Errorf("failed to create second cipher: %w", err)
	}

	// Determine if this is IPv4
	isIPv4 := ip.To4() != nil

	// Initialize encrypted result
	encrypted := make([]byte, 16)

	// Determine starting point
	prefixStart := 0
	if isIPv4 {
		prefixStart = 96
		// Copy the IPv4-mapped prefix
		copy(encrypted[:12], ipBytes[:12])
	}

	// Initialize padded prefix for the starting prefix length
	paddedPrefix := make([]byte, 16)
	if isIPv4 {
		// For IPv4: pad_prefix_96
		paddedPrefix[3] = 0x01 // Set bit at position 96
		paddedPrefix[14] = 0xFF
		paddedPrefix[15] = 0xFF
	} else {
		// For IPv6: pad_prefix_0
		paddedPrefix[15] = 0x01 // Set bit at position 0
	}

	// Process each bit position
	for prefixLenBits := prefixStart; prefixLenBits < 128; prefixLenBits++ {
		// Compute pseudorandom function with dual AES encryption
		e1 := make([]byte, 16)
		cipher1.Encrypt(e1, paddedPrefix)

		e2 := make([]byte, 16)
		cipher2.Encrypt(e2, paddedPrefix)

		// XOR the two encryptions
		e := xorBytes(e1, e2)
		// We only need the least significant bit
		cipherBit := e[15] & 1

		// Extract the current bit from the original IP
		currentBitPos := 127 - prefixLenBits
		originalBit := getBit(ipBytes, currentBitPos)

		// Set the bit in the encrypted result
		setBit(encrypted, currentBitPos, cipherBit^originalBit)

		// Prepare padded_prefix for next iteration
		// Shift left by 1 bit and insert the next bit from ipBytes
		paddedPrefix = shiftLeftOneBit(paddedPrefix)
		bitToInsert := getBit(ipBytes, 127-prefixLenBits)
		setBit(paddedPrefix, 0, bitToInsert)
	}

	// Return the appropriate format
	if isIPv4 {
		// Return just the IPv4 part
		return net.IP(encrypted[12:16]), nil
	}
	return net.IP(encrypted), nil
}

// DecryptIPPfx decrypts an IP address that was encrypted using ipcrypt-pfx mode.
// The key must be exactly 32 bytes long (split into two AES-128 keys).
// Returns the decrypted IP address.
func DecryptIPPfx(encryptedIP net.IP, key []byte) (net.IP, error) {
	if len(key) != 32 {
		return nil, fmt.Errorf("%w: got %d bytes, want 32 bytes", ErrInvalidKeySize, len(key))
	}

	// Split the key into two AES-128 keys
	k1 := key[:16]
	k2 := key[16:32]

	// Check that K1 and K2 are different
	if subtle.ConstantTimeCompare(k1, k2) == 1 {
		return nil, errors.New("the two halves of the key must be different")
	}

	// Determine if this is IPv4
	isIPv4 := encryptedIP.To4() != nil

	// Convert to 16-byte representation
	var encryptedBytes []byte
	if isIPv4 {
		// Convert IPv4 to IPv4-mapped IPv6 format
		encryptedBytes = make([]byte, 16)
		copy(encryptedBytes[:10], []byte{0, 0, 0, 0, 0, 0, 0, 0, 0, 0})
		copy(encryptedBytes[10:12], []byte{0xff, 0xff})
		copy(encryptedBytes[12:], encryptedIP.To4())
	} else {
		var err error
		encryptedBytes, err = validateIP(encryptedIP)
		if err != nil {
			return nil, err
		}
	}

	// Create AES cipher objects
	cipher1, err := aes.NewCipher(k1)
	if err != nil {
		return nil, fmt.Errorf("failed to create first cipher: %w", err)
	}

	cipher2, err := aes.NewCipher(k2)
	if err != nil {
		return nil, fmt.Errorf("failed to create second cipher: %w", err)
	}

	// Initialize decrypted result
	decrypted := make([]byte, 16)

	// Determine starting point
	prefixStart := 0
	if isIPv4 {
		prefixStart = 96
		// Copy the IPv4-mapped prefix
		copy(decrypted[:12], encryptedBytes[:12])
	}

	// Initialize padded prefix for the starting prefix length
	paddedPrefix := make([]byte, 16)
	if isIPv4 {
		// For IPv4: pad_prefix_96
		paddedPrefix[3] = 0x01 // Set bit at position 96
		paddedPrefix[14] = 0xFF
		paddedPrefix[15] = 0xFF
	} else {
		// For IPv6: pad_prefix_0
		paddedPrefix[15] = 0x01 // Set bit at position 0
	}

	// Process each bit position
	for prefixLenBits := prefixStart; prefixLenBits < 128; prefixLenBits++ {
		// Compute pseudorandom function with dual AES encryption
		e1 := make([]byte, 16)
		cipher1.Encrypt(e1, paddedPrefix)

		e2 := make([]byte, 16)
		cipher2.Encrypt(e2, paddedPrefix)

		// XOR the two encryptions
		e := xorBytes(e1, e2)
		// We only need the least significant bit
		cipherBit := e[15] & 1

		// Extract the current bit from the encrypted IP
		currentBitPos := 127 - prefixLenBits
		encryptedBit := getBit(encryptedBytes, currentBitPos)

		// Set the bit in the decrypted result
		setBit(decrypted, currentBitPos, cipherBit^encryptedBit)

		// Prepare padded_prefix for next iteration
		// Shift left by 1 bit and insert the next bit from decrypted
		paddedPrefix = shiftLeftOneBit(paddedPrefix)
		bitToInsert := getBit(decrypted, 127-prefixLenBits)
		setBit(paddedPrefix, 0, bitToInsert)
	}

	// Return the appropriate format
	if isIPv4 {
		// Return just the IPv4 part
		return net.IP(decrypted[12:16]), nil
	}
	return net.IP(decrypted), nil
}

// Helper functions for bit manipulation

// getBit extracts bit at position from 16-byte array
// position: 0 = LSB of byte 15, 127 = MSB of byte 0
func getBit(data []byte, position int) byte {
	byteIndex := 15 - (position / 8)
	bitIndex := position % 8
	return (data[byteIndex] >> bitIndex) & 1
}

// setBit sets bit at position in 16-byte array
// position: 0 = LSB of byte 15, 127 = MSB of byte 0
func setBit(data []byte, position int, value byte) {
	byteIndex := 15 - (position / 8)
	bitIndex := position % 8
	if value != 0 {
		data[byteIndex] |= 1 << bitIndex
	} else {
		data[byteIndex] &^= 1 << bitIndex
	}
}

// shiftLeftOneBit shifts a 16-byte array one bit to the left
// The most significant bit is lost, and a zero bit is shifted in from the right
func shiftLeftOneBit(data []byte) []byte {
	if len(data) != 16 {
		return nil
	}

	result := make([]byte, 16)
	carry := byte(0)

	// Process from least significant byte (byte 15) to most significant (byte 0)
	for i := 15; i >= 0; i-- {
		// Current byte shifted left by 1, with carry from previous byte
		result[i] = ((data[i] << 1) | carry) & 0xFF
		// Extract the bit that will be carried to the next byte
		carry = (data[i] >> 7) & 1
	}

	return result
}

// Extended non-deterministic mode functions

// EncryptIPNonDeterministicX encrypts an IP address using ipcrypt-ndx mode.
// The key must be exactly KeySizeNDX bytes long.
// If tweak is nil, a random tweak will be generated.
// Returns a byte slice containing the tweak concatenated with the encrypted IP.
func EncryptIPNonDeterministicX(ip string, key []byte, tweak []byte) ([]byte, error) {
	if err := validateKey(key, KeySizeNDX); err != nil {
		return nil, err
	}

	ipBytes, err := validateIP(net.ParseIP(ip))
	if err != nil {
		return nil, err
	}

	key1 := key[:KeySizeND]
	key2 := key[KeySizeND:]

	block1, err := aes.NewCipher(key1)
	if err != nil {
		return nil, fmt.Errorf("failed to create first cipher: %w", err)
	}

	block2, err := aes.NewCipher(key2)
	if err != nil {
		return nil, fmt.Errorf("failed to create second cipher: %w", err)
	}

	var t []byte
	if tweak == nil {
		t = make([]byte, TweakSizeX)
		if _, err := rand.Read(t); err != nil {
			return nil, fmt.Errorf("failed to generate tweak: %w", err)
		}
	} else {
		if err := validateTweak(tweak, TweakSizeX); err != nil {
			return nil, err
		}
		t = tweak
	}

	encryptedTweak := make([]byte, 16)
	block2.Encrypt(encryptedTweak, t)

	xoredIP := xorBytes(ipBytes, encryptedTweak)
	if xoredIP == nil {
		return nil, errors.New("XOR operation failed")
	}

	encrypted := make([]byte, 16)
	block1.Encrypt(encrypted, xoredIP)

	finalEncrypted := xorBytes(encrypted, encryptedTweak)
	if finalEncrypted == nil {
		return nil, errors.New("XOR operation failed")
	}

	result := make([]byte, TweakSizeX+16)
	copy(result[:TweakSizeX], t)
	copy(result[TweakSizeX:], finalEncrypted)
	return result, nil
}

// DecryptIPNonDeterministicX decrypts an IP address that was encrypted using ipcrypt-ndx mode.
// The key must be exactly KeySizeNDX bytes long.
// Returns the decrypted IP address as a string.
func DecryptIPNonDeterministicX(ciphertext []byte, key []byte) (string, error) {
	if err := validateKey(key, KeySizeNDX); err != nil {
		return "", err
	}

	if len(ciphertext) != TweakSizeX+16 {
		return "", fmt.Errorf("invalid ciphertext length: got %d, want %d", len(ciphertext), TweakSizeX+16)
	}

	key1 := key[:KeySizeND]
	key2 := key[KeySizeND:]

	block1, err := aes.NewCipher(key1)
	if err != nil {
		return "", fmt.Errorf("failed to create first cipher: %w", err)
	}

	block2, err := aes.NewCipher(key2)
	if err != nil {
		return "", fmt.Errorf("failed to create second cipher: %w", err)
	}

	tweak := ciphertext[:TweakSizeX]
	encryptedIP := ciphertext[TweakSizeX:]

	encryptedTweak := make([]byte, 16)
	block2.Encrypt(encryptedTweak, tweak)

	xoredIP := xorBytes(encryptedIP, encryptedTweak)
	if xoredIP == nil {
		return "", errors.New("XOR operation failed")
	}

	decrypted := make([]byte, 16)
	block1.Decrypt(decrypted, xoredIP)

	finalDecrypted := xorBytes(decrypted, encryptedTweak)
	if finalDecrypted == nil {
		return "", errors.New("XOR operation failed")
	}

	return net.IP(finalDecrypted).String(), nil
}