File: sharded.go

package info (click to toggle)
golang-github-jedisct1-go-sieve-cache 0.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 188 kB
  • sloc: makefile: 4
file content (355 lines) | stat: -rw-r--r-- 9,870 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
package sievecache

import (
	"errors"
	"fmt"
	"hash/maphash"
)

// Default number of shards to use if not specified explicitly.
const DefaultShards = 16

// ShardedSieveCache is a thread-safe implementation of SieveCache that uses multiple shards to reduce contention.
type ShardedSieveCache[K comparable, V any] struct {
	// Array of shard mutexes, each containing a separate SieveCache instance
	shards []*SyncSieveCache[K, V]
	// Number of shards in the cache
	numShards int
}

// NewSharded creates a new sharded cache with the specified capacity, using the default number of shards.
func NewSharded[K comparable, V any](capacity int) (*ShardedSieveCache[K, V], error) {
	return NewShardedWithShards[K, V](capacity, DefaultShards)
}

// NewShardedWithShards creates a new sharded cache with the specified capacity and number of shards.
func NewShardedWithShards[K comparable, V any](capacity int, numShards int) (*ShardedSieveCache[K, V], error) {
	if capacity <= 0 {
		return nil, errors.New("ShardedSieveCache: capacity must be greater than 0")
	}
	if numShards <= 0 {
		return nil, errors.New("ShardedSieveCache: number of shards must be greater than 0")
	}

	// Calculate per-shard capacity
	baseCapacityPerShard := capacity / numShards
	remaining := capacity % numShards

	shards := make([]*SyncSieveCache[K, V], numShards)
	for i := 0; i < numShards; i++ {
		// Distribute the remaining capacity to the first 'remaining' shards
		shardCapacity := baseCapacityPerShard
		if i < remaining {
			shardCapacity++
		}

		// Ensure at least capacity 1 per shard
		if shardCapacity < 1 {
			shardCapacity = 1
		}

		cache, err := NewSync[K, V](shardCapacity)
		if err != nil {
			return nil, err
		}
		shards[i] = cache
	}

	return &ShardedSieveCache[K, V]{
		shards:    shards,
		numShards: numShards,
	}, nil
}

// DefaultSharded creates a new sharded cache with a default capacity of 100 and default shard count.
func DefaultSharded[K comparable, V any]() *ShardedSieveCache[K, V] {
	cache, err := NewSharded[K, V](100)
	if err != nil {
		// This should never happen with non-zero capacity
		panic("Failed to create cache with default capacity")
	}
	return cache
}

// FromSync creates a new sharded cache from an existing SyncSieveCache.
func FromSync[K comparable, V any](syncCache *SyncSieveCache[K, V]) *ShardedSieveCache[K, V] {
	// Create a new sharded cache with the same capacity
	capacity := syncCache.Capacity()
	shardedCache, err := NewSharded[K, V](capacity)
	if err != nil {
		// This should never happen with valid capacity
		panic("Failed to create sharded cache")
	}

	// Transfer all entries
	items := syncCache.Items()
	for _, item := range items {
		shardedCache.Insert(item.Key, item.Value)
	}

	return shardedCache
}

var hashSeed = maphash.MakeSeed()

// getShard returns the shard index for a given key.
func (c *ShardedSieveCache[K, V]) getShardIndex(key K) int {
	var h maphash.Hash
	h.SetSeed(hashSeed)

	// Use type switch to handle different key types efficiently
	switch k := any(key).(type) {
	case string:
		h.WriteString(k)
	case []byte:
		h.Write(k)
	case int:
		var buf [8]byte
		buf[0] = byte(k)
		buf[1] = byte(k >> 8)
		buf[2] = byte(k >> 16)
		buf[3] = byte(k >> 24)
		h.Write(buf[:4])
	case int64:
		var buf [8]byte
		buf[0] = byte(k)
		buf[1] = byte(k >> 8)
		buf[2] = byte(k >> 16)
		buf[3] = byte(k >> 24)
		buf[4] = byte(k >> 32)
		buf[5] = byte(k >> 40)
		buf[6] = byte(k >> 48)
		buf[7] = byte(k >> 56)
		h.Write(buf[:])
	default:
		// For other types, convert to string
		h.WriteString(ToString(k))
	}

	hashValue := h.Sum64()
	return int(hashValue % uint64(c.numShards))
}

// ToString converts a value to string for hashing.
// This is a simple implementation that should be customized for better performance
// with specific key types.
func ToString(v any) string {
	if s, ok := v.(string); ok {
		return s
	}
	if stringer, ok := v.(interface{ String() string }); ok {
		return stringer.String()
	}
	// For other types, just use %v formatting
	return fmt.Sprintf("%v", v)
}

// getShard returns the shard for a given key.
func (c *ShardedSieveCache[K, V]) getShard(key K) *SyncSieveCache[K, V] {
	index := c.getShardIndex(key)
	return c.shards[index]
}

// Capacity returns the total capacity of the cache (sum of all shard capacities).
func (c *ShardedSieveCache[K, V]) Capacity() int {
	total := 0
	for _, shard := range c.shards {
		total += shard.Capacity()
	}
	return total
}

// Len returns the total number of entries in the cache (sum of all shard lengths).
func (c *ShardedSieveCache[K, V]) Len() int {
	total := 0
	for _, shard := range c.shards {
		total += shard.Len()
	}
	return total
}

// IsEmpty returns true when no values are currently cached in any shard.
func (c *ShardedSieveCache[K, V]) IsEmpty() bool {
	for _, shard := range c.shards {
		if !shard.IsEmpty() {
			return false
		}
	}
	return true
}

// ContainsKey returns true if there is a value in the cache mapped to by key.
func (c *ShardedSieveCache[K, V]) ContainsKey(key K) bool {
	return c.getShard(key).ContainsKey(key)
}

// Get returns the value in the cache mapped to by key.
func (c *ShardedSieveCache[K, V]) Get(key K) (V, bool) {
	return c.getShard(key).Get(key)
}

// GetMut gets a mutable reference to the value in the cache mapped to by key via a callback function.
func (c *ShardedSieveCache[K, V]) GetMut(key K, f func(*V)) bool {
	return c.getShard(key).GetMut(key, f)
}

// Insert maps key to value in the cache, possibly evicting old entries from the appropriate shard.
func (c *ShardedSieveCache[K, V]) Insert(key K, value V) bool {
	return c.getShard(key).Insert(key, value)
}

// Remove removes the cache entry mapped to by key.
func (c *ShardedSieveCache[K, V]) Remove(key K) (V, bool) {
	return c.getShard(key).Remove(key)
}

// Evict removes and returns a value from the cache that was not recently accessed.
// It tries each shard in turn until it finds a value to evict.
func (c *ShardedSieveCache[K, V]) Evict() (V, bool) {
	var zero V

	// Try each shard in turn
	for _, shard := range c.shards {
		value, found := shard.Evict()
		if found {
			return value, true
		}
	}

	return zero, false
}

// Clear removes all entries from the cache.
func (c *ShardedSieveCache[K, V]) Clear() {
	for _, shard := range c.shards {
		shard.Clear()
	}
}

// Keys returns a slice of all keys in the cache.
func (c *ShardedSieveCache[K, V]) Keys() []K {
	// First count total keys to allocate proper size
	totalKeys := 0
	for _, shard := range c.shards {
		totalKeys += shard.Len()
	}

	// Pre-allocate slice with exact capacity
	allKeys := make([]K, 0, totalKeys)

	// Collect keys from all shards
	for _, shard := range c.shards {
		allKeys = append(allKeys, shard.Keys()...)
	}

	return allKeys
}

// Values returns a slice of all values in the cache.
func (c *ShardedSieveCache[K, V]) Values() []V {
	// First count total values to allocate proper size
	totalValues := 0
	for _, shard := range c.shards {
		totalValues += shard.Len()
	}

	// Pre-allocate slice with exact capacity
	allValues := make([]V, 0, totalValues)

	// Collect values from all shards
	for _, shard := range c.shards {
		allValues = append(allValues, shard.Values()...)
	}

	return allValues
}

// Items returns a slice of all key-value pairs in the cache.
func (c *ShardedSieveCache[K, V]) Items() []struct {
	Key   K
	Value V
} {
	// First count total items to allocate proper size
	totalItems := 0
	for _, shard := range c.shards {
		totalItems += shard.Len()
	}

	// Pre-allocate slice with exact capacity
	allItems := make([]struct {
		Key   K
		Value V
	}, 0, totalItems)

	// Collect items from all shards
	for _, shard := range c.shards {
		allItems = append(allItems, shard.Items()...)
	}

	return allItems
}

// ForEachValue applies a function to all values in the cache across all shards.
func (c *ShardedSieveCache[K, V]) ForEachValue(f func(*V)) {
	// Process each shard sequentially
	for _, shard := range c.shards {
		shard.ForEachValue(f)
	}
}

// ForEachEntry applies a function to all key-value pairs in the cache across all shards.
func (c *ShardedSieveCache[K, V]) ForEachEntry(f func(K, *V)) {
	// Process each shard sequentially
	for _, shard := range c.shards {
		shard.ForEachEntry(f)
	}
}

// WithKeyLock gets exclusive access to a specific shard based on the key.
// This can be useful for performing multiple operations atomically on entries
// that share the same shard.
func (c *ShardedSieveCache[K, V]) WithKeyLock(key K, f func(*SieveCache[K, V])) {
	c.getShard(key).WithLock(f)
}

// NumShards returns the number of shards in this cache.
func (c *ShardedSieveCache[K, V]) NumShards() int {
	return c.numShards
}

// GetShardByIndex gets a specific shard by index.
// Returns nil if the index is out of bounds.
func (c *ShardedSieveCache[K, V]) GetShardByIndex(index int) *SyncSieveCache[K, V] {
	if index < 0 || index >= c.numShards {
		return nil
	}
	return c.shards[index]
}

// Retain only keeps elements specified by the predicate.
// Removes all entries for which f returns false.
func (c *ShardedSieveCache[K, V]) Retain(f func(K, V) bool) {
	// Process each shard sequentially
	for _, shard := range c.shards {
		shard.Retain(f)
	}
}

// RecommendedCapacity analyzes the current cache utilization and recommends a new capacity.
func (c *ShardedSieveCache[K, V]) RecommendedCapacity(minFactor, maxFactor, lowThreshold, highThreshold float64) int {
	// For each shard, calculate the recommended capacity
	totalRecommended := 0

	for _, shard := range c.shards {
		shardRecommended := shard.RecommendedCapacity(minFactor, maxFactor, lowThreshold, highThreshold)
		totalRecommended += shardRecommended
	}

	// Ensure we return at least the original capacity for an empty cache
	// and at least the number of shards otherwise
	if c.IsEmpty() {
		return c.Capacity()
	}

	return max(c.numShards, totalRecommended)
}