File: sharded_test.go

package info (click to toggle)
golang-github-jedisct1-go-sieve-cache 0.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 188 kB
  • sloc: makefile: 4
file content (278 lines) | stat: -rw-r--r-- 6,669 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
package sievecache

import (
	"fmt"
	"sync"
	"testing"
	"time"
)

func TestShardedCacheBasics(t *testing.T) {
	cache, err := NewSharded[string, string](100)
	if err != nil {
		t.Fatalf("Failed to create cache: %v", err)
	}

	// Insert a value
	inserted := cache.Insert("key1", "value1")
	if !inserted {
		t.Error("Expected insert to return true for new key")
	}

	// Read back the value
	val, found := cache.Get("key1")
	if !found || val != "value1" {
		t.Errorf("Expected value1, got %v", val)
	}

	// Check contains key
	if !cache.ContainsKey("key1") {
		t.Error("Expected ContainsKey to return true")
	}

	// Check capacity and length
	if cache.Capacity() < 100 {
		t.Errorf("Expected capacity at least 100, got %d", cache.Capacity())
	}
	if cache.Len() != 1 {
		t.Errorf("Expected length 1, got %d", cache.Len())
	}

	// Remove a value
	val, found = cache.Remove("key1")
	if !found || val != "value1" {
		t.Errorf("Expected value1, got %v", val)
	}

	if cache.Len() != 0 {
		t.Errorf("Expected length 0, got %d", cache.Len())
	}

	if !cache.IsEmpty() {
		t.Error("Expected IsEmpty to return true")
	}
}

func TestCustomShardCount(t *testing.T) {
	cache, err := NewShardedWithShards[string, string](100, 4)
	if err != nil {
		t.Fatalf("Failed to create cache: %v", err)
	}

	if cache.NumShards() != 4 {
		t.Errorf("Expected 4 shards, got %d", cache.NumShards())
	}

	for i := 0; i < 10; i++ {
		key := fmt.Sprintf("key%d", i)
		value := fmt.Sprintf("value%d", i)
		cache.Insert(key, value)
	}

	if cache.Len() != 10 {
		t.Errorf("Expected length 10, got %d", cache.Len())
	}
}

func TestParallelAccess(t *testing.T) {
	// Use a capacity that's a multiple of the number of shards
	// to ensure each shard has the same capacity
	cache, _ := NewShardedWithShards[string, string](1600, 16)

	var wg sync.WaitGroup

	// Spawn 8 goroutines that each insert 100 items
	numThreads := 8
	itemsPerThread := 100
	wg.Add(numThreads)

	for th := 0; th < numThreads; th++ {
		go func(threadNum int) {
			defer wg.Done()
			for i := 0; i < itemsPerThread; i++ {
				key := fmt.Sprintf("thread%dkey%d", threadNum, i)
				value := fmt.Sprintf("value%d_%d", threadNum, i)
				cache.Insert(key, value)
			}
		}(th)
	}

	// Wait for all goroutines to complete
	wg.Wait()

	// Verify total item count
	if cache.Len() != numThreads*itemsPerThread {
		t.Errorf("Expected length %d, got %d", numThreads*itemsPerThread, cache.Len())
	}

	// Check a few random keys
	val, found := cache.Get("thread0key50")
	if !found || val != "value0_50" {
		t.Errorf("Expected value0_50, got %v", val)
	}

	val, found = cache.Get("thread7key99")
	if !found || val != "value7_99" {
		t.Errorf("Expected value7_99, got %v", val)
	}
}

func TestWithKeyLock(t *testing.T) {
	// Create a sharded cache with a single shard for this test
	cache, _ := NewShardedWithShards[string, string](100, 1)

	// Use any key since there's only one shard
	shardKey := "test_key"

	// Perform multiple operations atomically using the shared lock
	cache.WithKeyLock(shardKey, func(shard *SieveCache[string, string]) {
		// Insert using the direct access to the underlying SieveCache
		shard.Insert("key1", "value1")
		shard.Insert("key2", "value2")
		shard.Insert("key3", "value3")

		// Verify the shard has the expected entries
		if shard.Len() != 3 {
			t.Errorf("Expected shard length 3, got %d", shard.Len())
		}

		// Verify we can retrieve directly from the shard
		value, ok := shard.Get("key1")
		if !ok || value != "value1" {
			t.Errorf("Expected to get value1 from shard, got %v, ok=%v", value, ok)
		}
	})

	// Now access through the regular cache interface
	val, found := cache.Get("key1")
	if !found || val != "value1" {
		t.Errorf("Expected value1, got %v, found=%v", val, found)
	}

	val, found = cache.Get("key2")
	if !found || val != "value2" {
		t.Errorf("Expected value2, got %v, found=%v", val, found)
	}

	val, found = cache.Get("key3")
	if !found || val != "value3" {
		t.Errorf("Expected value3, got %v, found=%v", val, found)
	}

	if cache.Len() != 3 {
		t.Errorf("Expected total cache length 3, got %d", cache.Len())
	}
}

func TestEviction(t *testing.T) {
	cache, _ := NewShardedWithShards[string, string](10, 2)

	// Fill the cache
	for i := 0; i < 15; i++ {
		key := fmt.Sprintf("key%d", i)
		value := fmt.Sprintf("value%d", i)
		cache.Insert(key, value)
	}

	// The cache should not exceed its capacity
	if cache.Len() > 10 {
		t.Errorf("Expected length at most 10, got %d", cache.Len())
	}

	// We should be able to evict items
	val, success := cache.Evict()
	if !success {
		t.Error("Expected Evict to return true")
	} else {
		t.Logf("Evicted value: %s", val)
	}
}

func TestContention(t *testing.T) {
	cache, _ := NewShardedWithShards[string, int](1000, 16)

	// Create keys that we know will hash to different shards
	keys := make([]string, 16)
	for i := 0; i < 16; i++ {
		keys[i] = fmt.Sprintf("shard_key_%d", i)
	}

	// Spawn 16 goroutines, each hammering a different key
	var wg sync.WaitGroup
	wg.Add(16)

	for i := 0; i < 16; i++ {
		go func(idx int) {
			defer wg.Done()
			key := keys[idx]

			for j := 0; j < 1000; j++ {
				cache.Insert(key, j)
				_, _ = cache.Get(key)

				// Small sleep to make contention more likely
				if j%100 == 0 {
					time.Sleep(time.Microsecond)
				}
			}
		}(i)
	}

	// Wait for all goroutines to complete
	wg.Wait()

	// All keys should still be present
	for _, key := range keys {
		if !cache.ContainsKey(key) {
			t.Errorf("Key %s is missing", key)
		}
	}
}

func TestGetMutConcurrent(t *testing.T) {
	cache, _ := NewShardedWithShards[string, int](100, 8)

	// Insert initial values
	for i := 0; i < 10; i++ {
		cache.Insert(fmt.Sprintf("key%d", i), 0)
	}

	// Spawn 5 goroutines that modify values concurrently
	var wg sync.WaitGroup
	numThreads := 5
	wg.Add(numThreads)

	for t := 0; t < numThreads; t++ {
		go func() {
			defer wg.Done()

			for i := 0; i < 10; i++ {
				for j := 0; j < 100; j++ {
					cache.GetMut(fmt.Sprintf("key%d", i), func(value *int) {
						*value += 1
					})
				}
			}
		}()
	}

	// Wait for all goroutines to complete
	wg.Wait()

	// With our thread-safe implementation that clones values during modification,
	// we can't guarantee exactly 500 increments due to race conditions.
	// Some increments may be lost when one thread's changes overwrite another's.
	// We simply verify that modifications happened and the cache remains functional.
	for i := 0; i < 10; i++ {
		val, found := cache.Get(fmt.Sprintf("key%d", i))
		if !found {
			t.Errorf("Key key%d is missing", i)
		} else {
			if val == 0 {
				t.Errorf("Key key%d was not incremented", i)
			} else {
				t.Logf("key%d value: %d", i, val)
			}
		}
	}
}