File: sievecache.go

package info (click to toggle)
golang-github-jedisct1-go-sieve-cache 0.1.7-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 188 kB
  • sloc: makefile: 4
file content (473 lines) | stat: -rw-r--r-- 13,673 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
package sievecache

import (
	"errors"
	"math"
)

// SieveCache provides an efficient in-memory cache with the SIEVE eviction algorithm.
// This is the single-threaded implementation.
type SieveCache[K comparable, V any] struct {
	// Map of keys to indices in the nodes slice (pointer, 8 bytes)
	indices map[K]int
	// Slice of all cache nodes (pointer + len + cap, 24 bytes)
	nodes []Node[K, V]
	// Bit array for visited flags using 1 bit per entry (pointer, 8 bytes)
	visited *BitSet
	// Grouping integer fields together for better memory alignment (each 8 bytes)
	capacity int
	hand     int
	// Place smaller fields last to minimize padding (bool is 1 byte)
	handInitialized bool
}

// New creates a new cache with the given capacity.
// Returns an error if capacity is less than or equal to zero.
func New[K comparable, V any](capacity int) (*SieveCache[K, V], error) {
	if capacity <= 0 {
		return nil, errors.New("SieveCache: capacity must be greater than 0")
	}

	return &SieveCache[K, V]{
		indices:         make(map[K]int, capacity),
		nodes:           make([]Node[K, V], 0, capacity),
		visited:         NewBitSet(capacity),
		hand:            0,
		handInitialized: false,
		capacity:        capacity,
	}, nil
}

// Capacity returns the maximum number of entries the cache can hold.
func (c *SieveCache[K, V]) Capacity() int {
	return c.capacity
}

// Len returns the number of cached values.
func (c *SieveCache[K, V]) Len() int {
	return len(c.nodes)
}

// IsEmpty returns true when no values are currently cached.
func (c *SieveCache[K, V]) IsEmpty() bool {
	return len(c.nodes) == 0
}

// ContainsKey returns true if there is a value in the cache mapped to by key.
func (c *SieveCache[K, V]) ContainsKey(key K) bool {
	_, exists := c.indices[key]
	return exists
}

// Get returns the value in the cache mapped to by key.
// If no value exists for key, returns the zero value of V and false.
// This operation marks the entry as "visited" in the SIEVE algorithm,
// which affects eviction decisions.
func (c *SieveCache[K, V]) Get(key K) (V, bool) {
	var zero V
	idx, exists := c.indices[key]
	if !exists {
		return zero, false
	}

	// Mark as visited for the SIEVE algorithm
	c.visited.Set(idx, true)
	return c.nodes[idx].Value, true
}

// GetPointer returns a pointer to the value in the cache mapped to by key.
// If no value exists for key, returns nil.
// This operation marks the entry as "visited" in the SIEVE algorithm,
// which affects eviction decisions.
func (c *SieveCache[K, V]) GetPointer(key K) *V {
	idx, exists := c.indices[key]
	if !exists {
		return nil
	}

	// Mark as visited for the SIEVE algorithm
	c.visited.Set(idx, true)
	return &c.nodes[idx].Value
}

// Insert maps key to value in the cache, possibly evicting old entries.
// If the key already exists, its value is updated and the entry is marked as visited.
// Returns true when this is a new entry, and false if an existing entry was updated.
func (c *SieveCache[K, V]) Insert(key K, value V) bool {
	// Check if key already exists
	if idx, exists := c.indices[key]; exists {
		// Update existing entry
		c.visited.Set(idx, true)
		c.nodes[idx].Value = value
		return false
	}

	// Evict if at capacity
	if len(c.nodes) >= c.capacity {
		c.Evict()
	}

	// Add new node to the end
	node := NewNode(key, value)
	c.nodes = append(c.nodes, node)
	idx := len(c.nodes) - 1
	c.visited.Append(false) // Initialize as not visited
	c.indices[key] = idx
	return true
}

// Remove removes the cache entry mapped to by key.
// Returns the value removed from the cache and true if the key was present.
// If key did not map to any value, returns the zero value of V and false.
func (c *SieveCache[K, V]) Remove(key K) (V, bool) {
	var zero V
	idx, exists := c.indices[key]
	if !exists {
		return zero, false
	}

	delete(c.indices, key)

	// If this is the last element, just remove it
	if idx == len(c.nodes)-1 {
		node := c.nodes[len(c.nodes)-1]
		c.nodes = c.nodes[:len(c.nodes)-1]
		c.visited.Truncate(len(c.nodes))
		return node.Value, true
	}

	// Update hand if needed
	if c.handInitialized {
		if c.hand == idx {
			// Move hand to the previous node or wrap to end
			if idx > 0 {
				c.hand = idx - 1
			} else {
				c.hand = len(c.nodes) - 2
			}
		} else if c.hand == len(c.nodes)-1 {
			// If hand points to the last element (which will be moved to idx)
			c.hand = idx
		}
	}

	// Remove the node by replacing it with the last one and updating the map
	removedNode := c.nodes[idx]
	lastIdx := len(c.nodes) - 1
	lastNode := c.nodes[lastIdx]

	// Move the last node to the removed position
	c.nodes[idx] = lastNode
	c.visited.Set(idx, c.visited.Get(lastIdx))

	// Truncate slices
	c.nodes = c.nodes[:lastIdx]
	c.visited.Truncate(lastIdx)

	// Update the indices map for the moved node
	if idx < len(c.nodes) {
		c.indices[lastNode.Key] = idx
	}

	return removedNode.Value, true
}

// Evict removes and returns a value from the cache that was not recently accessed.
// This method implements the SIEVE eviction algorithm.
// Returns the evicted value and true if a suitable entry was found, or the zero
// value of V and false if all entries have been recently accessed or the cache is empty.
func (c *SieveCache[K, V]) Evict() (V, bool) {
	var zero V
	if len(c.nodes) == 0 {
		return zero, false
	}

	// Start from the hand pointer or the end if hand is not initialized
	var currentIdx int
	if c.handInitialized {
		currentIdx = c.hand
	} else {
		currentIdx = len(c.nodes) - 1
	}
	startIdx := currentIdx

	// Track whether we've wrapped around
	wrapped := false
	foundIdx := -1

	// Scan for a non-visited entry
	for {
		// If current node is not visited, mark it for eviction
		if !c.visited.Get(currentIdx) {
			foundIdx = currentIdx
			break
		}

		// Mark as non-visited for next scan
		c.visited.Set(currentIdx, false)

		// Move to previous node or wrap to end
		if currentIdx > 0 {
			currentIdx--
		} else {
			// Wrap around to end of slice
			if wrapped {
				// If we've already wrapped, break to avoid infinite loop
				break
			}
			wrapped = true
			currentIdx = len(c.nodes) - 1
		}

		// If we've looped back to start, we've checked all nodes
		if currentIdx == startIdx {
			break
		}
	}

	// If we found a node to evict
	if foundIdx >= 0 {
		evictIdx := foundIdx

		// Update the hand pointer to the previous node or wrap to end
		if evictIdx > 0 {
			c.hand = evictIdx - 1
		} else if len(c.nodes) > 1 {
			c.hand = len(c.nodes) - 2
		} else {
			// Keep hand at 0 but mark as not initialized
			c.handInitialized = false
		}
		c.handInitialized = true

		// Remove the key from the map
		delete(c.indices, c.nodes[evictIdx].Key)

		// Remove the node and return its value
		nodeToEvict := c.nodes[evictIdx]

		if evictIdx == len(c.nodes)-1 {
			// If last node, just remove it
			c.nodes = c.nodes[:len(c.nodes)-1]
			c.visited.Truncate(len(c.nodes))
			return nodeToEvict.Value, true
		}

		// Otherwise swap with the last node
		lastIdx := len(c.nodes) - 1
		lastNode := c.nodes[lastIdx]
		c.nodes[evictIdx] = lastNode
		c.visited.Set(evictIdx, c.visited.Get(lastIdx))
		c.nodes = c.nodes[:lastIdx]
		c.visited.Truncate(lastIdx)

		// Update the indices map for the moved node
		c.indices[lastNode.Key] = evictIdx

		return nodeToEvict.Value, true
	}

	return zero, false
}

// Clear removes all entries from the cache.
func (c *SieveCache[K, V]) Clear() {
	// Pre-allocate map with capacity hint to avoid rehashing during growth
	c.indices = make(map[K]int, c.capacity)
	// Pre-allocate slice with capacity hint to minimize reallocations
	c.nodes = make([]Node[K, V], 0, c.capacity)
	// Initialize bit set
	c.visited = NewBitSet(c.capacity)
	c.hand = 0
	c.handInitialized = false
}

// Keys returns a slice of all keys in the cache.
func (c *SieveCache[K, V]) Keys() []K {
	// Pre-allocate with exact capacity
	keys := make([]K, len(c.nodes))
	for i, node := range c.nodes {
		keys[i] = node.Key
	}
	return keys
}

// Values returns a slice of all values in the cache.
func (c *SieveCache[K, V]) Values() []V {
	// Pre-allocate with exact capacity
	values := make([]V, len(c.nodes))
	for i, node := range c.nodes {
		values[i] = node.Value
	}
	return values
}

// Items returns a slice of all key-value pairs in the cache.
func (c *SieveCache[K, V]) Items() []struct {
	Key   K
	Value V
} {
	// Pre-allocate with exact capacity
	items := make([]struct {
		Key   K
		Value V
	}, len(c.nodes))

	for i, node := range c.nodes {
		items[i].Key = node.Key
		items[i].Value = node.Value
	}

	return items
}

// ForEach iterates over all entries in the cache and applies the function f to each pair.
// The iteration order is not specified and should not be relied upon.
func (c *SieveCache[K, V]) ForEach(f func(k K, v V)) {
	for _, node := range c.nodes {
		f(node.Key, node.Value)
	}
}

// ForEachValue iterates over all values in the cache and applies the function f to each.
// This allows modifying the values in-place.
func (c *SieveCache[K, V]) ForEachValue(f func(v *V)) {
	for i := range c.nodes {
		f(&c.nodes[i].Value)
	}
}

// Retain only keeps elements specified by the predicate.
// Removes all entries for which f returns false.
func (c *SieveCache[K, V]) Retain(f func(k K, v V) bool) {
	// Use a more efficient allocation strategy for the removal list
	nodeCount := len(c.nodes)
	if nodeCount == 0 {
		return
	}

	// Start with a small capacity and grow as needed
	// This avoids over-allocation for large caches with few removals
	initialCap := min(32, nodeCount/4)
	if initialCap < 8 {
		initialCap = 8
	}

	// Collect indices to remove
	toRemove := make([]int, 0, initialCap)

	for i, node := range c.nodes {
		if !f(node.Key, node.Value) {
			toRemove = append(toRemove, i)
		}
	}

	// Remove indices from highest to lowest to avoid invalidating other indices
	for i := len(toRemove) - 1; i >= 0; i-- {
		idx := toRemove[i]

		// Remove from map
		delete(c.indices, c.nodes[idx].Key)

		// If it's the last element, just remove it
		if idx == len(c.nodes)-1 {
			c.nodes = c.nodes[:len(c.nodes)-1]
			c.visited.Truncate(len(c.nodes))
		} else {
			// Replace with the last element
			lastIdx := len(c.nodes) - 1
			lastNode := c.nodes[lastIdx]

			// Move the last node to the removed position
			c.nodes[idx] = lastNode
			c.visited.Set(idx, c.visited.Get(lastIdx))
			c.nodes = c.nodes[:lastIdx]
			c.visited.Truncate(lastIdx)

			// Update indices map if not removed
			if idx < len(c.nodes) {
				c.indices[lastNode.Key] = idx
			}

			// Update hand if needed
			if c.handInitialized {
				if c.hand == idx {
					// Hand was pointing to the removed node, move it to previous
					if idx > 0 {
						c.hand = idx - 1
					} else if len(c.nodes) > 0 {
						c.hand = len(c.nodes) - 1
					} else {
						c.handInitialized = false
					}
				} else if c.hand == lastIdx {
					// Hand was pointing to the last node that was moved
					c.hand = idx
				}
			}
		}
	}
}

// RecommendedCapacity analyzes the current cache utilization and recommends a new capacity.
// Parameters:
// - minFactor: Minimum scaling factor (e.g., 0.5 means recommend at least 50% of current capacity)
// - maxFactor: Maximum scaling factor (e.g., 2.0 means recommend at most 200% of current capacity)
// - lowThreshold: Utilization threshold below which capacity is reduced
// - highThreshold: Utilization threshold above which capacity is increased
func (c *SieveCache[K, V]) RecommendedCapacity(minFactor, maxFactor, lowThreshold, highThreshold float64) int {
	// If the cache is empty, return the current capacity
	if len(c.nodes) == 0 {
		return c.capacity
	}

	// Count entries with visited flag set
	visitedCount := c.visited.CountSetBits()

	// Calculate the utilization ratio (visited entries / total entries)
	utilizationRatio := float64(visitedCount) / float64(len(c.nodes))

	// Calculate fill ratio (total entries / capacity)
	fillRatio := float64(len(c.nodes)) / float64(c.capacity)

	// Low fill ratio threshold (consider the cache underfilled below this)
	lowFillThreshold := 0.1 // 10% filled

	// Fill ratio takes precedence over utilization:
	// If the cache is severely underfilled, we should decrease capacity
	// regardless of utilization
	if fillRatio < lowFillThreshold {
		// Calculate how much to decrease based on how empty the cache is
		fillBelowThreshold := 0.0
		if fillRatio > 0.0 {
			fillBelowThreshold = (lowFillThreshold - fillRatio) / lowFillThreshold
		} else {
			fillBelowThreshold = 1.0
		}
		// Apply the minFactor as a floor
		scalingFactor := 1.0 - (1.0-minFactor)*fillBelowThreshold

		// Apply the scaling factor to current capacity and ensure it's at least 1
		return max(1, int(math.Round(float64(c.capacity)*scalingFactor)))
	}

	// For normal fill levels, use the original logic based on utilization
	var scalingFactor float64
	if utilizationRatio >= highThreshold {
		// High utilization - recommend increasing the capacity
		// Scale between 1.0 and maxFactor based on utilization above the high threshold
		utilizationAboveThreshold := (utilizationRatio - highThreshold) / (1.0 - highThreshold)
		scalingFactor = 1.0 + (maxFactor-1.0)*utilizationAboveThreshold
	} else if utilizationRatio <= lowThreshold {
		// Low utilization - recommend decreasing capacity
		// Scale between minFactor and 1.0 based on how far below the low threshold
		utilizationBelowThreshold := (lowThreshold - utilizationRatio) / lowThreshold
		scalingFactor = 1.0 - (1.0-minFactor)*utilizationBelowThreshold
	} else {
		// Normal utilization - keep current capacity
		scalingFactor = 1.0
	}

	// Apply the scaling factor to current capacity and ensure it's at least 1
	return max(1, int(math.Round(float64(c.capacity)*scalingFactor)))
}