1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
|
// Copyright 2015-2018 Canonical Ltd.
// Licensed under the LGPLv3, see LICENCE file for details.
package testclock
import (
"fmt"
"runtime/debug"
"sort"
"sync"
"time"
"github.com/juju/clock"
"github.com/juju/errors"
"github.com/juju/loggo"
)
// timer implements a mock clock.Timer for testing purposes.
type timer struct {
deadline time.Time
clock *Clock
c chan time.Time
// trigger is called when the timer expires. It is
// called with the clock mutex held and will not block.
trigger func()
stack []byte
}
// Reset is part of the clock.Timer interface.
func (t *timer) Reset(d time.Duration) bool {
return t.clock.reset(t, d)
}
// Stop is part of the clock.Timer interface.
func (t *timer) Stop() bool {
return t.clock.stop(t)
}
// Chan is part of the clock.Timer interface.
func (t *timer) Chan() <-chan time.Time {
return t.c
}
// Clock implements a mock clock.Clock for testing purposes.
type Clock struct {
mu sync.Mutex
now time.Time
waiting []*timer // timers waiting to fire, sorted by deadline.
notifyAlarms chan struct{}
}
var _ AdvanceableClock = (*Clock)(nil)
// NewClock returns a new clock set to the supplied time. If your SUT needs to
// call After, AfterFunc, NewTimer or Timer.Reset more than 10000 times: (1)
// you have probably written a bad test; and (2) you'll need to read from the
// Alarms chan to keep the buffer clear.
func NewClock(now time.Time) *Clock {
return &Clock{
now: now,
notifyAlarms: make(chan struct{}, 10000),
}
}
// Now is part of the clock.Clock interface.
func (clock *Clock) Now() time.Time {
clock.mu.Lock()
defer clock.mu.Unlock()
return clock.now
}
// After is part of the clock.Clock interface.
func (clock *Clock) After(d time.Duration) <-chan time.Time {
return clock.NewTimer(d).Chan()
}
func (clock *Clock) NewTimer(d time.Duration) clock.Timer {
c := make(chan time.Time, 1)
return clock.addAlarm(d, c, func() {
c <- clock.now
})
}
// AfterFunc is part of the clock.Clock interface.
func (clock *Clock) AfterFunc(d time.Duration, f func()) clock.Timer {
return clock.addAlarm(d, nil, func() {
go f()
})
}
func (clock *Clock) addAlarm(d time.Duration, c chan time.Time, trigger func()) *timer {
defer clock.notifyAlarm()
clock.mu.Lock()
defer clock.mu.Unlock()
t := &timer{
c: c,
deadline: clock.now.Add(d),
clock: clock,
trigger: trigger,
stack: debug.Stack(),
}
clock.addTimer(t)
clock.triggerAll()
return t
}
// Advance advances the result of Now by the supplied duration, and sends
// the "current" time on all alarms which are no longer "in the future".
func (clock *Clock) Advance(d time.Duration) {
clock.mu.Lock()
defer clock.mu.Unlock()
clock.now = clock.now.Add(d)
if len(clock.waiting) == 0 {
loggo.GetLogger("juju.clock").Debugf("advancing a clock that has nothing waiting: cf. https://github.com/juju/juju/wiki/Intermittent-failures")
}
clock.triggerAll()
}
// WaitAdvance functions the same as Advance, but only if there is n timers in
// clock.waiting. This came about while fixing lp:1607044 intermittent
// failures. It turns out that testing.Clock.Advance might advance the time
// and trigger notifications before triggers are set. So we wait a limited time
// 'w' for 'n' timers to show up in clock.waiting, and if they do we advance
// 'd'.
func (clock *Clock) WaitAdvance(d, w time.Duration, n int) error {
pause := w / 10
if pause > 10*time.Millisecond {
pause = 10 * time.Millisecond
}
finalTimeout := time.After(w)
next := time.After(0)
for {
select {
case <-finalTimeout:
if clock.hasNWaiters(n) {
clock.Advance(d)
return nil
}
clock.mu.Lock()
got := len(clock.waiting)
var stacks string
for _, t := range clock.waiting {
stacks += fmt.Sprintf("timer deadline: %v\n%s", t.deadline, string(t.stack))
}
clock.mu.Unlock()
return errors.Errorf(
"got %d timers added after waiting %s: wanted %d, stacks:\n%s",
got, w.String(), n, stacks)
case <-next:
if clock.hasNWaiters(n) {
clock.Advance(d)
return nil
}
next = time.After(pause)
}
}
}
// hasNWaiters checks if the clock currently has 'n' timers waiting to fire.
func (clock *Clock) hasNWaiters(n int) bool {
clock.mu.Lock()
hasWaiters := len(clock.waiting) == n
clock.mu.Unlock()
return hasWaiters
}
// Alarms returns a channel on which you can read one value for every call to
// After and AfterFunc; and for every successful Timer.Reset backed by this
// Clock. It might not be elegant but it's necessary when testing time logic
// that runs on a goroutine other than that of the test.
func (clock *Clock) Alarms() <-chan struct{} {
return clock.notifyAlarms
}
// triggerAll triggers any alarms that are currently due and removes them
// from clock.waiting.
func (clock *Clock) triggerAll() {
triggered := 0
for _, t := range clock.waiting {
if clock.now.Before(t.deadline) {
break
}
t.trigger()
triggered++
}
clock.waiting = clock.waiting[triggered:]
}
// reset is the underlying implementation of clock.Timer.Reset, which may be
// called by any Timer backed by this Clock.
func (clock *Clock) reset(t *timer, d time.Duration) bool {
defer clock.notifyAlarm()
clock.mu.Lock()
defer clock.mu.Unlock()
found := false
for _, wt := range clock.waiting {
if wt == t {
found = true
}
}
if !found {
clock.waiting = append(clock.waiting, t)
}
t.deadline = clock.now.Add(d)
sort.Sort(byDeadline(clock.waiting))
if d <= 0 {
// If duration is <= 0, that means we should be triggering the
// Timer right away, as "now" has already occured.
clock.triggerAll()
}
return found
}
// stop is the underlying implementation of clock.Timer.Reset, which may be
// called by any Timer backed by this Clock.
func (clock *Clock) stop(t *timer) bool {
clock.mu.Lock()
defer clock.mu.Unlock()
for i, wt := range clock.waiting {
if wt == t {
clock.waiting = removeFromSlice(clock.waiting, i)
return true
}
}
return false
}
// addTimer adds an alarm at time t.
func (clock *Clock) addTimer(t *timer) {
clock.waiting = append(clock.waiting, t)
sort.Sort(byDeadline(clock.waiting))
}
// notifyAlarm sends a value on the channel exposed by Alarms().
func (clock *Clock) notifyAlarm() {
select {
case clock.notifyAlarms <- struct{}{}:
default:
panic("alarm notification buffer full")
}
}
// byDeadline is used to sort alarms by time.
type byDeadline []*timer
func (a byDeadline) Len() int { return len(a) }
func (a byDeadline) Less(i, j int) bool { return a[i].deadline.Before(a[j].deadline) }
func (a byDeadline) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
// removeFromSlice removes item at the specified index from the slice.
func removeFromSlice(sl []*timer, index int) []*timer {
return append(sl[:index], sl[index+1:]...)
}
// AutoAdvancingClock wraps a clock.Clock, calling the Advance
// function whenever After or AfterFunc are called.
type AutoAdvancingClock struct {
clock.Clock
Advance func(time.Duration)
}
func (c *AutoAdvancingClock) After(d time.Duration) <-chan time.Time {
ch := c.Clock.After(d)
c.Advance(d)
return ch
}
func (c *AutoAdvancingClock) AfterFunc(d time.Duration, f func()) clock.Timer {
t := c.Clock.AfterFunc(d, f)
c.Advance(d)
return t
}
|