File: dilated.go

package info (click to toggle)
golang-github-juju-clock 1.0.3-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 176 kB
  • sloc: makefile: 18
file content (224 lines) | stat: -rw-r--r-- 5,949 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
// Copyright 2022 Canonical Ltd.
// Licensed under the LGPLv3, see LICENCE file for details.

package testclock

import (
	"sync"
	"sync/atomic"
	"time"

	"github.com/juju/clock"
)

// NewDilatedWallClock returns a clock that can be sped up or slowed down.
// realSecondDuration is the real duration of a second.
func NewDilatedWallClock(realSecondDuration time.Duration) AdvanceableClock {
	dc := &dilationClock{
		epoch:              time.Now(),
		realSecondDuration: realSecondDuration,
		offsetChanged:      make(chan any),
	}
	dc.offsetChangedCond = sync.NewCond(dc.offsetChangedMutex.RLocker())
	return dc
}

type dilationClock struct {
	// offsetAtomic is the current dilated offset to allow for time jumps/advances.
	// Must be the first item in the struct to ensure proper 64-bit alignment as
	// documented at https://pkg.go.dev/sync/atomic#pkg-note-BUG
	offsetAtomic int64

	epoch              time.Time
	realSecondDuration time.Duration

	// offsetChanged is a channel that is closed when timers need to be signaled
	// that there is a offset change coming.
	offsetChanged chan any
	// offsetChangedMutex is a mutex protecting the offsetChanged and is used by
	// the offsetChangedCond.
	offsetChangedMutex sync.RWMutex
	// offsetChangedCond is used to signal timers that they may try to pull the new
	// offset.
	offsetChangedCond *sync.Cond
}

// Now is part of the Clock interface.
func (dc *dilationClock) Now() time.Time {
	dt, _ := dc.nowWithOffset()
	return dt
}

func (dc *dilationClock) nowWithOffset() (time.Time, time.Duration) {
	offset := time.Duration(atomic.LoadInt64(&dc.offsetAtomic))
	realNow := time.Now()
	dt := dilateTime(dc.epoch, realNow, dc.realSecondDuration, offset)
	return dt, offset
}

// After implements Clock.After
func (dc *dilationClock) After(d time.Duration) <-chan time.Time {
	t := newDilatedWallTimer(dc, d, nil)
	return t.c
}

// AfterFunc implements Clock.AfterFunc
func (dc *dilationClock) AfterFunc(d time.Duration, f func()) clock.Timer {
	return newDilatedWallTimer(dc, d, f)
}

// NewTimer implements Clock.NewTimer
func (dc *dilationClock) NewTimer(d time.Duration) clock.Timer {
	return newDilatedWallTimer(dc, d, nil)
}

// Advance implements AdvanceableClock.Advance
func (dc *dilationClock) Advance(d time.Duration) {
	close(dc.offsetChanged)
	dc.offsetChangedMutex.Lock()
	dc.offsetChanged = make(chan any)
	atomic.AddInt64(&dc.offsetAtomic, int64(d))
	dc.offsetChangedCond.Broadcast()
	dc.offsetChangedMutex.Unlock()
}

// dilatedWallTimer implements the Timer interface.
type dilatedWallTimer struct {
	timer      *time.Timer
	dc         *dilationClock
	c          chan time.Time
	target     time.Time
	offset     time.Duration
	after      func()
	done       chan any
	resetChan  chan resetReq
	resetMutex sync.Mutex
	stopChan   chan chan bool
}

type resetReq struct {
	d time.Duration
	r chan bool
}

func newDilatedWallTimer(dc *dilationClock, d time.Duration, after func()) *dilatedWallTimer {
	t := &dilatedWallTimer{
		dc:        dc,
		c:         make(chan time.Time),
		resetChan: make(chan resetReq),
		stopChan:  make(chan chan bool),
	}
	t.start(d, after)
	return t
}

func (t *dilatedWallTimer) start(d time.Duration, after func()) {
	t.dc.offsetChangedMutex.RLock()
	dialatedNow, offset := t.dc.nowWithOffset()
	realDuration := time.Duration(float64(d) * t.dc.realSecondDuration.Seconds())
	t.target = dialatedNow.Add(d)
	t.timer = time.NewTimer(realDuration)
	t.offset = offset
	t.after = after
	t.done = make(chan any)
	go t.run()
}

func (t *dilatedWallTimer) run() {
	defer t.dc.offsetChangedMutex.RUnlock()
	defer close(t.done)
	var sendChan chan time.Time
	var sendTime time.Time
	for {
		select {
		case reset := <-t.resetChan:
			realNow := time.Now()
			dialatedNow := dilateTime(t.dc.epoch, realNow, t.dc.realSecondDuration, t.offset)
			realDuration := time.Duration(float64(reset.d) * t.dc.realSecondDuration.Seconds())
			t.target = dialatedNow.Add(reset.d)
			sendChan = nil
			sendTime = time.Time{}
			reset.r <- t.timer.Reset(realDuration)
		case stop := <-t.stopChan:
			stop <- t.timer.Stop()
			return
		case tt := <-t.timer.C:
			if t.after != nil {
				t.after()
				return
			}
			if sendChan != nil {
				panic("reset should have been called")
			}
			sendChan = t.c
			sendTime = dilateTime(t.dc.epoch, tt, t.dc.realSecondDuration, t.offset)
		case sendChan <- sendTime:
			sendChan = nil
			sendTime = time.Time{}
			return
		case <-t.dc.offsetChanged:
			t.dc.offsetChangedCond.Wait()
			newOffset := time.Duration(atomic.LoadInt64(&t.dc.offsetAtomic))
			if newOffset == t.offset {
				continue
			}
			t.offset = newOffset
			stopped := t.timer.Stop()
			if !stopped {
				continue
			}
			realNow := time.Now()
			dialatedNow := dilateTime(t.dc.epoch, realNow, t.dc.realSecondDuration, t.offset)
			dialatedDuration := t.target.Sub(dialatedNow)
			if dialatedDuration <= 0 {
				sendChan = t.c
				sendTime = dialatedNow
				continue
			}
			realDuration := time.Duration(float64(dialatedDuration) * t.dc.realSecondDuration.Seconds())
			t.timer.Reset(realDuration)
		}
	}
}

// Chan implements Timer.Chan
func (t *dilatedWallTimer) Chan() <-chan time.Time {
	return t.c
}

// Chan implements Timer.Reset
func (t *dilatedWallTimer) Reset(d time.Duration) bool {
	t.resetMutex.Lock()
	defer t.resetMutex.Unlock()
	reset := resetReq{
		d: d,
		r: make(chan bool),
	}
	select {
	case <-t.done:
		t.start(d, nil)
		return true
	case t.resetChan <- reset:
		return <-reset.r
	}
}

// Chan implements Timer.Stop
func (t *dilatedWallTimer) Stop() bool {
	stop := make(chan bool)
	select {
	case <-t.done:
		return false
	case t.stopChan <- stop:
		return <-stop
	}
}

func dilateTime(epoch, realNow time.Time,
	realSecondDuration, dilatedOffset time.Duration) time.Time {
	delta := realNow.Sub(epoch)
	if delta < 0 {
		delta = time.Duration(0)
	}
	return epoch.Add(dilatedOffset).Add(time.Duration(float64(delta) / realSecondDuration.Seconds()))
}