1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792
|
package l2tp
import (
"errors"
"fmt"
"strings"
"sync"
"time"
"github.com/go-kit/kit/log"
"github.com/go-kit/kit/log/level"
"golang.org/x/sys/unix"
)
// slowStartState represents state for the transport sequence numbers
// and slow start/congestion avoidance algorithm.
type slowStartState struct {
lock sync.Mutex
ns, nr, cwnd, thresh, nacks, ntx uint16
}
// xmitMsg encapsulates state for control message transmission,
// wrapping the basic controlMessage with transport-specific
// metadata.
type xmitMsg struct {
xport *transport
// The message for transmission
msg controlMessage
// The current retry count for the message. This is bound by
// the transport config MaxRetries parameter.
nretries uint
// When transmission is complete (either: the message has been
// transmitted and acked by the peer, transmission itself has
// failed, or retransmission has timed out) the resulting error
// is sent on this channel.
completeChan chan error
// Completion state flag used internally by the transport.
isComplete bool
// Timer for retransmission if the peer doesn't ack the message.
retryTimer *time.Timer
onComplete func(m *xmitMsg, err error)
}
// rawMsg represents a raw frame read from the transport socket.
type rawMsg struct {
b []byte
sa unix.Sockaddr
}
// recvMsg represents a received control message.
type recvMsg struct {
msg controlMessage
from unix.Sockaddr
}
// nrInd represents a received sequence value.
type nrInd struct {
msgType avpMsgType
nr uint16
}
// transportConfig represents the tunable parameters governing
// the behaviour of the reliable transport algorithm.
type transportConfig struct {
// Duration to wait after last message receipt before
// sending a HELLO keepalive message. If set to 0, no HELLO messages
// are transmitted.
HelloTimeout time.Duration
// Maximum number of messages we will send to the peer without having
// received an acknowledgement.
TxWindowSize uint16
// Maximum number of retransmits of an unacknowledged control packet.
MaxRetries uint
// Duration to wait before first packet retransmit.
// Subsequent retransmits up to the limit set by maxRetries occur at
// exponentially increasing intervals as per RFC3931. If set to 0,
// a default value of 1 second is used.
RetryTimeout time.Duration
// Duration to wait before explicitly acking a control message.
// Most control messages will be implicitly acked by control protocol
// responses.
AckTimeout time.Duration
// Version of the L2TP protocol to use for transport-generated messages.
Version ProtocolVersion
// Peer control connection ID to use for transport-generated messages
PeerControlConnID ControlConnID
}
// transport represents the RFC2661/RFC3931
// reliable transport algorithm state.
type transport struct {
logger log.Logger
slowStart slowStartState
config transportConfig
cp *controlPlane
helloTimer, ackTimer *time.Timer
helloInFlight bool
sendChan chan *xmitMsg
retryChan chan *xmitMsg
recvChan chan *recvMsg
nrChan chan []nrInd
rxQueue []*recvMsg
txQueue, ackQueue []*xmitMsg
senderWg sync.WaitGroup
receiverWg sync.WaitGroup
}
// Increment transport sequence number by one avoiding overflow
// as per RFC2661/RFC3931
func seqIncrement(seqNum uint16) uint16 {
next := uint32(seqNum)
next = (next + 1) % 0x10000
return uint16(next)
}
// Sequence number comparision as per RFC2661/RFC3931
func seqCompare(seq1, seq2 uint16) int {
var delta uint16
if seq2 <= seq1 {
delta = seq1 - seq2
} else {
delta = (0xffff - seq2 + 1) + seq1
}
if delta == 0 {
return 0
} else if delta < 0x8000 {
return 1
}
return -1
}
func (s *slowStartState) canSend() bool {
s.lock.Lock()
defer s.lock.Unlock()
return s.ntx < s.cwnd
}
func (s *slowStartState) onSend() {
s.lock.Lock()
defer s.lock.Unlock()
s.ntx++
}
func (s *slowStartState) onAck(maxTxWindow uint16) {
s.lock.Lock()
defer s.lock.Unlock()
if s.ntx > 0 {
if s.cwnd < maxTxWindow {
if s.cwnd < s.thresh {
// slow start
s.cwnd++
} else {
// congestion avoidance
s.nacks++
if s.nacks >= s.cwnd {
s.nacks = 0
s.cwnd++
}
}
}
s.ntx--
}
}
func (s *slowStartState) onRetransmit() {
s.lock.Lock()
defer s.lock.Unlock()
s.thresh = s.cwnd / 2
s.cwnd = 1
}
func (s *slowStartState) incrementNr() {
s.lock.Lock()
defer s.lock.Unlock()
s.nr = seqIncrement(s.nr)
}
func (s *slowStartState) incrementNs() {
s.lock.Lock()
defer s.lock.Unlock()
s.ns = seqIncrement(s.ns)
}
// A message with ns value equal to our nr is the next packet in sequence.
func (s *slowStartState) msgIsInSequence(msg controlMessage) bool {
s.lock.Lock()
defer s.lock.Unlock()
return seqCompare(s.nr, msg.ns()) == 0
}
// A message with ns value < our nr is stale/duplicated.
func (s *slowStartState) msgIsStale(msg controlMessage) bool {
s.lock.Lock()
defer s.lock.Unlock()
return seqCompare(msg.ns(), s.nr) == -1
}
func (s *slowStartState) getSequenceNumbers() (ns, nr uint16) {
s.lock.Lock()
defer s.lock.Unlock()
return s.ns, s.nr
}
func (m *xmitMsg) txComplete(err error) {
if !m.isComplete {
level.Debug(m.xport.logger).Log(
"message", "send complete",
"message_type", m.msg.getType(),
"error", err)
m.isComplete = true
if m.retryTimer != nil {
m.retryTimer.Stop()
}
m.onComplete(m, err)
}
}
func newTimer(duration time.Duration) *time.Timer {
if duration == 0 {
duration = 1 * time.Hour
}
t := time.NewTimer(duration)
t.Stop()
return t
}
func sanitiseConfig(cfg *transportConfig) {
if cfg.TxWindowSize == 0 || cfg.TxWindowSize > 65535 {
cfg.TxWindowSize = defaulttransportConfig().TxWindowSize
}
if cfg.RetryTimeout == 0 {
cfg.RetryTimeout = defaulttransportConfig().RetryTimeout
}
if cfg.AckTimeout == 0 {
cfg.AckTimeout = defaulttransportConfig().AckTimeout
}
if cfg.MaxRetries == 0 {
cfg.MaxRetries = defaulttransportConfig().MaxRetries
}
}
func (xport *transport) rawRecv() (buffer []byte, from unix.Sockaddr, err error) {
buffer = make([]byte, 4096)
n, from, err := xport.cp.recvFrom(buffer)
if err != nil {
return nil, nil, err
}
buffer = buffer[:n]
return
}
func (xport *transport) receiver() {
for {
buffer, from, err := xport.rawRecv()
if err != nil {
close(xport.nrChan)
level.Error(xport.logger).Log(
"message", "socket read failed",
"error", err)
return
}
level.Debug(xport.logger).Log(
"message", "socket recv",
"length", len(buffer))
// Parse the received frame into control messages, perform early
// sequence number validation.
messages, err := xport.recvFrame(&rawMsg{b: buffer, sa: from})
if err != nil {
// Early packet handling can fail for a variety of reasons.
// The most important of these is if a peer sends a mandatory
// AVP that we don't recognise: this MUST cause the tunnel to fail
// per the RFCs. Anything else we just log for information.
level.Error(xport.logger).Log(
"message", "frame receive failed",
"error", err)
if strings.Contains("failed to parse mandatory AVP", err.Error()) {
close(xport.nrChan)
return
}
}
// Add received messages to the rx queue. Pass the nr values of the received
// messages to the sender goroutine for processing of the ack queue and possible
// re-opening of the send window.
rxNr := []nrInd{}
for _, msg := range messages {
xport.rxQueue = append(xport.rxQueue, &recvMsg{msg: msg, from: from})
rxNr = append(rxNr, nrInd{msgType: msg.getType(), nr: msg.nr()})
}
xport.nrChan <- rxNr
xport.processRxQueue()
}
}
func (xport *transport) sender() {
for {
select {
// Transmission request from user code
case xmitMsg, ok := <-xport.sendChan:
if !ok {
xport.down(errors.New("transport shut down by user"))
return
}
level.Debug(xport.logger).Log(
"message", "send",
"message_type", xmitMsg.msg.getType())
xport.txQueue = append(xport.txQueue, xmitMsg)
err := xport.processTxQueue()
if err != nil {
xport.down(err)
return
}
// Nr sequence updates from receiver
case rxNr, ok := <-xport.nrChan:
if !ok {
xport.down(errors.New("receive path error"))
return
}
// Process the ack queue to see whether the nr updates ack any outstanding
// messages. If we manage to dequeue a message it may result in opening the
// window for further transmission, in which case process the tx queue.
for _, nri := range rxNr {
if xport.processAckQueue(nri.nr) {
err := xport.processTxQueue()
if err != nil {
xport.down(err)
return
}
}
}
// Kick the ack timer if we received any non-ack message. We don't want to
// ack an ack message since we'll end up ping-ponging acks back and forth forever.
for _, nri := range rxNr {
if nri.msgType != avpMsgTypeAck {
xport.toggleAckTimer(true)
break
}
}
// The fact we've seen any traffic at all means we should reset the hello timer
xport.resetHelloTimer()
// Message retry request due to timeout waiting for an ack
case xmitMsg, ok := <-xport.retryChan:
if !ok {
return
}
level.Info(xport.logger).Log(
"message", "retransmit",
"message_type", xmitMsg.msg.getType())
// It's possible that a message ack could race with the retry timer.
// Hence we track completion state in the message struct to avoid
// a bogus retransmit.
if !xmitMsg.isComplete {
err := xport.retransmitMessage(xmitMsg)
if err != nil {
xmitMsg.txComplete(err)
xport.down(err)
return
}
}
// Timer fired for sending a hello message
case <-xport.helloTimer.C:
if !xport.helloInFlight {
err := xport.sendHelloMessage()
if err != nil {
xport.down(err)
return
}
xport.helloInFlight = true
}
// Timer fired for sending an explicit ack
case <-xport.ackTimer.C:
err := xport.sendExplicitAck()
if err != nil {
xport.down(err)
return
}
}
}
}
func (xport *transport) recvFrame(rawMsg *rawMsg) (messages []controlMessage, err error) {
messages, err = parseMessageBuffer(rawMsg.b)
if err != nil {
return nil, err
}
ns, nr := xport.slowStart.getSequenceNumbers()
for _, msg := range messages {
// Sanity check the packet sequence number: return an error if it's not OK
if seqCompare(msg.nr(), seqIncrement(ns)) > 0 {
return nil, fmt.Errorf("dropping invalid packet %s ns %d nr %d (transport ns %d nr %d)",
msg.getType(), msg.ns(), msg.nr(), ns, nr)
}
}
return messages, nil
}
// Find the next message which can be handled (either stale or in-sequence)
func (xport *transport) dequeueRxMessage() *recvMsg {
for i := 0; i < len(xport.rxQueue); i++ {
m := xport.rxQueue[0]
if xport.slowStart.msgIsInSequence(m.msg) || xport.slowStart.msgIsStale(m.msg) {
xport.rxQueue = append(xport.rxQueue[:i], xport.rxQueue[i+1:]...)
return m
}
}
return nil
}
func (xport *transport) processRxQueue() {
// Pop messages off the receive queue in sequence, and process.
// Give up when there are no more in-sequence messages to handle.
for {
m := xport.dequeueRxMessage()
if m == nil {
return
}
// We don't need to do anything more with an ack message since
// they only serve to update the ack queue. So just ignore them here.
if m.msg.getType() != avpMsgTypeAck {
// If a message is stale, just ignore it here. It'll be acked
// implicitly by the ack timer.
if xport.slowStart.msgIsInSequence(m.msg) {
level.Debug(xport.logger).Log(
"message", "recv",
"message_type", m.msg.getType())
xport.slowStart.incrementNr()
xport.recvChan <- m
}
}
}
}
func (xport *transport) sendMessage1(msg controlMessage, isRetransmit bool) error {
// Set message sequence numbers.
// A retransmitted message should have ns set already.
ns, nr := xport.slowStart.getSequenceNumbers()
if isRetransmit {
msg.setTransportSeqNum(msg.ns(), nr)
} else {
msg.setTransportSeqNum(ns, nr)
}
level.Debug(xport.logger).Log(
"message", "send",
"message_type", msg.getType(),
"ns", msg.ns(),
"nr", msg.nr(),
"isRetransmit", isRetransmit)
// Render as a byte slice and send.
b, err := msg.toBytes()
if err == nil {
_, err = xport.cp.write(b)
}
return err
}
// Exponential retry timeout scaling as per RFC2661/RFC3931
func (xport *transport) scaleRetryTimeout(msg *xmitMsg) time.Duration {
return xport.config.RetryTimeout * (1 << msg.nretries)
}
func (xport *transport) sendMessage(msg *xmitMsg) error {
err := xport.sendMessage1(msg.msg, msg.nretries > 0)
if err == nil {
xport.toggleAckTimer(false) // we have just sent an implicit ack
xport.resetHelloTimer()
if msg.msg.getType() != avpMsgTypeAck && msg.nretries == 0 {
xport.slowStart.incrementNs()
}
msg.retryTimer = time.AfterFunc(xport.scaleRetryTimeout(msg), func() {
xport.retryChan <- msg
})
}
return err
}
func (xport *transport) retransmitMessage(msg *xmitMsg) error {
msg.nretries++
if msg.nretries >= xport.config.MaxRetries {
return fmt.Errorf("transmit of %s failed after %d retry attempts",
msg.msg.getType(), xport.config.MaxRetries)
}
err := xport.sendMessage(msg)
if err == nil {
xport.slowStart.onRetransmit()
}
return err
}
func (xport *transport) processTxQueue() error {
// Loop the transmit queue sending messages in order while
// the transmit window is open.
for len(xport.txQueue) > 0 {
if !xport.slowStart.canSend() {
// We've sent all we can for the time being. This is not
// an error condition, so return successfully.
return nil
}
// Pop from the tx queue, send, add to the ack queue
msg := xport.txQueue[0]
xport.txQueue = append(xport.txQueue[:0], xport.txQueue[1:]...)
err := xport.sendMessage(msg)
if err == nil {
xport.ackQueue = append(xport.ackQueue, msg)
xport.slowStart.onSend()
} else {
msg.txComplete(err)
return err
}
}
return nil
}
func (xport *transport) processAckQueue(nr uint16) (found bool) {
for i := 0; i < len(xport.ackQueue); i++ {
msg := xport.ackQueue[0]
if seqCompare(nr, msg.msg.ns()) > 0 {
xport.slowStart.onAck(xport.config.TxWindowSize)
xport.ackQueue = append(xport.ackQueue[:i], xport.ackQueue[i+1:]...)
i--
msg.txComplete(nil)
found = true
}
}
return
}
func (xport *transport) closeReceiver() {
var drainWg sync.WaitGroup
exit := make(chan interface{})
drainWg.Add(1)
go func() {
defer drainWg.Done()
for {
select {
case <-exit:
return
case _, ok := <-xport.recvChan:
if !ok {
return
}
case <-xport.nrChan:
}
}
}()
xport.cp.close()
xport.receiverWg.Wait()
drainWg.Wait()
}
func (xport *transport) down(err error) {
// Shut down the receiver
xport.closeReceiver()
// Flush tx and ack queues: complete these messages to unblock
// callers pending on their completion.
// Note the rx queue is flushed by the receiver go routine *after*
// xport.receiver() has terminated. We don't do it here since
// doing so would represent a data race.
for len(xport.txQueue) > 0 {
msg := xport.txQueue[0]
xport.txQueue = append(xport.txQueue[:0], xport.txQueue[1:]...)
msg.txComplete(err)
}
for len(xport.ackQueue) > 0 {
msg := xport.ackQueue[0]
xport.ackQueue = append(xport.ackQueue[:0], xport.ackQueue[1:]...)
msg.txComplete(err)
}
// Stop timers: we don't care about the return value since
// the transport goroutine will return after calling this function
// and hence won't be able to process racing timer messages
xport.toggleAckTimer(false)
_ = xport.helloTimer.Stop()
level.Error(xport.logger).Log(
"message", "transport down",
"error", err)
}
func (xport *transport) toggleAckTimer(enable bool) {
if enable {
xport.ackTimer.Reset(xport.config.AckTimeout)
} else {
// TODO: is this bad?
_ = xport.ackTimer.Stop()
}
}
func (xport *transport) resetHelloTimer() {
if xport.config.HelloTimeout > 0 {
xport.helloTimer.Reset(xport.config.HelloTimeout)
}
}
func (xport *transport) sendHelloMessage() error {
var msg controlMessage
a, err := newAvp(vendorIDIetf, avpTypeMessage, avpMsgTypeHello)
if err != nil {
return fmt.Errorf("failed to build hello message type AVP: %v", err)
}
if xport.config.Version == ProtocolVersion3Fallback || xport.config.Version == ProtocolVersion3 {
msg, err = newV3ControlMessage(xport.config.PeerControlConnID, []avp{*a})
} else {
msg, err = newV2ControlMessage(xport.config.PeerControlConnID, 0, []avp{*a})
}
if err != nil {
return fmt.Errorf("failed to build hello message: %v", err)
}
return xport.sendMessage(&xmitMsg{
xport: xport,
msg: msg,
onComplete: helloSendComplete,
})
}
func helloSendComplete(m *xmitMsg, err error) {
m.xport.helloInFlight = false
}
func (xport *transport) sendExplicitAck() (err error) {
var msg controlMessage
if xport.config.Version == ProtocolVersion3Fallback || xport.config.Version == ProtocolVersion3 {
a, err := newAvp(vendorIDIetf, avpTypeMessage, avpMsgTypeAck)
if err != nil {
return fmt.Errorf("failed to build v3 explicit ack message type AVP: %v", err)
}
msg, err = newV3ControlMessage(xport.config.PeerControlConnID, []avp{*a})
if err != nil {
return fmt.Errorf("failed to build v3 explicit ack message: %v", err)
}
} else {
msg, err = newV2ControlMessage(xport.config.PeerControlConnID, 0, []avp{})
if err != nil {
return fmt.Errorf("failed to build v2 ZLB message: %v", err)
}
}
return xport.sendMessage1(msg, false)
}
// defaulttransportConfig returns a default configuration for the transport.
func defaulttransportConfig() transportConfig {
return transportConfig{
HelloTimeout: 0 * time.Second,
TxWindowSize: 4,
MaxRetries: 3,
RetryTimeout: 1 * time.Second,
AckTimeout: 100 * time.Millisecond,
Version: ProtocolVersion3,
}
}
// newTransport creates a new RFC2661/RFC3931 reliable transport.
// The control plane passed in is owned by the transport and will
// be closed by the transport when the transport is closed.
func newTransport(logger log.Logger, cp *controlPlane, cfg transportConfig) (xport *transport, err error) {
if cp == nil {
return nil, errors.New("illegal nil control plane argument")
}
// Make sure the config is sane
sanitiseConfig(&cfg)
// We always create timer instances even if they're not going to be used.
// This makes the logic for the transport go routine select easier to manage.
helloTimer := newTimer(cfg.HelloTimeout)
ackTimer := newTimer(cfg.AckTimeout)
xport = &transport{
logger: log.With(logger, "function", "transport"),
slowStart: slowStartState{
thresh: cfg.TxWindowSize,
cwnd: 1,
},
config: cfg,
cp: cp,
helloTimer: helloTimer,
ackTimer: ackTimer,
sendChan: make(chan *xmitMsg),
retryChan: make(chan *xmitMsg),
recvChan: make(chan *recvMsg),
nrChan: make(chan []nrInd),
rxQueue: []*recvMsg{},
txQueue: []*xmitMsg{},
ackQueue: []*xmitMsg{},
}
xport.resetHelloTimer()
xport.senderWg.Add(1)
go func() {
defer xport.senderWg.Done()
xport.sender()
}()
xport.receiverWg.Add(1)
go func() {
defer xport.receiverWg.Done()
xport.receiver()
// Flush rx queue
xport.rxQueue = xport.rxQueue[0:0]
// Unblock user code blocking on receive from the transport
close(xport.recvChan)
}()
return xport, nil
}
// getConfig allows transport parameters to be queried.
func (xport *transport) getConfig() transportConfig {
return xport.config
}
// send sends a control message using the reliable transport.
// The caller will block until the message has been acked by the peer.
// Failure indicates that the transport has failed and the parent tunnel
// should be torn down.
func (xport *transport) send(msg controlMessage) error {
err := msg.validate()
if err != nil {
return fmt.Errorf("failed to validate message: %v", err)
}
cm := xmitMsg{
xport: xport,
msg: msg,
completeChan: make(chan error),
onComplete: sendComplete,
}
xport.sendChan <- &cm
err = <-cm.completeChan
return err
}
func sendComplete(m *xmitMsg, err error) {
m.completeChan <- err
}
// recv receives a control message using the reliable transport.
// The caller will block until a message has been received from the peer.
// Failure indicates that the transport has failed and the parent tunnel
// should be torn down.
func (xport *transport) recv() (msg controlMessage, from unix.Sockaddr, err error) {
m, ok := <-xport.recvChan
if !ok {
return nil, nil, errors.New("transport is down")
}
return m.msg, m.from, nil
}
// close closes the transport.
func (xport *transport) close() {
close(xport.sendChan)
xport.senderWg.Wait()
}
|