1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880
|
// Code generated by automation. DO NOT EDIT
package float64_tree
import (
"fmt"
"github.com/kentik/patricia"
)
// TreeV6 is an IP Address patricia tree
type TreeV6 struct {
nodes []treeNodeV6 // root is always at [1] - [0] is unused
availableIndexes []uint // a place to store node indexes that we deleted, and are available
tags map[uint64]float64
}
// NewTreeV6 returns a new Tree
func NewTreeV6() *TreeV6 {
return &TreeV6{
nodes: make([]treeNodeV6, 2), // index 0 is skipped, 1 is root
availableIndexes: make([]uint, 0),
tags: make(map[uint64]float64),
}
}
// Clone creates an identical copy of the tree
// - Note: the items in the tree are not deep copied
func (t *TreeV6) Clone() *TreeV6 {
ret := &TreeV6{
nodes: make([]treeNodeV6, len(t.nodes), cap(t.nodes)),
availableIndexes: make([]uint, len(t.availableIndexes), cap(t.availableIndexes)),
tags: make(map[uint64]float64, len(t.tags)),
}
copy(ret.nodes, t.nodes)
copy(ret.availableIndexes, t.availableIndexes)
for k, v := range t.tags {
ret.tags[k] = v
}
return ret
}
// CountTags iterates through the tree, counting the number of tags
// - note: unused nodes will have TagCount==0
func (t *TreeV6) CountTags() int {
ret := 0
for _, node := range t.nodes {
ret += node.TagCount
}
return ret
}
// add a tag to the node at the input index
// - if matchFunc is non-nil, it is used to determine equality (if nil, no existing tag match)
// - if udpateFunc is non-nil, it is used to update the tag if it already exists (if nil, the provided tag is used)
// - returns whether the tag count was increased
func (t *TreeV6) addTag(tag float64, nodeIndex uint, matchFunc MatchesFunc, updateFunc UpdatesFunc) bool {
key := (uint64(nodeIndex) << 32)
tagCount := t.nodes[nodeIndex].TagCount
if matchFunc != nil {
// need to check if this value already exists
for i := 0; i < tagCount; i++ {
if matchFunc(t.tags[key+uint64(i)], tag) {
if updateFunc != nil {
t.tags[key+(uint64(i))] = updateFunc(t.tags[key+(uint64(i))])
}
return false
}
}
}
t.tags[key+(uint64(tagCount))] = tag
t.nodes[nodeIndex].TagCount++
return true
}
// return the tags at the input node index - appending to the input slice if they pass the optional filter func
// - ret is only appended to
func (t *TreeV6) tagsForNode(ret []float64, nodeIndex uint, filterFunc FilterFunc) []float64 {
if nodeIndex == 0 {
// useful for base cases where we haven't found anything
return ret
}
// TODO: clean up the typing in here, between uint, uint64
tagCount := t.nodes[nodeIndex].TagCount
key := uint64(nodeIndex) << 32
for i := 0; i < tagCount; i++ {
tag := t.tags[key+uint64(i)]
if filterFunc == nil || filterFunc(tag) {
ret = append(ret, tag)
}
}
return ret
}
func (t *TreeV6) moveTags(fromIndex uint, toIndex uint) {
tagCount := t.nodes[fromIndex].TagCount
fromKey := uint64(fromIndex) << 32
toKey := uint64(toIndex) << 32
for i := 0; i < tagCount; i++ {
t.tags[toKey+uint64(i)] = t.tags[fromKey+uint64(i)]
delete(t.tags, fromKey+uint64(i))
}
t.nodes[toIndex].TagCount += t.nodes[fromIndex].TagCount
t.nodes[fromIndex].TagCount = 0
}
func (t *TreeV6) firstTagForNode(nodeIndex uint) float64 {
return t.tags[(uint64(nodeIndex) << 32)]
}
// delete tags at the input node, returning how many were deleted, and how many are left
// - uses input slice to reduce allocations
func (t *TreeV6) deleteTag(buf []float64, nodeIndex uint, matchTag float64, matchFunc MatchesFunc) (int, int) {
// get tags
buf = buf[:0]
buf = t.tagsForNode(buf, nodeIndex, nil)
if len(buf) == 0 {
return 0, 0
}
// delete tags
// TODO: this could be done smarter - delete in place?
for i := 0; i < t.nodes[nodeIndex].TagCount; i++ {
delete(t.tags, (uint64(nodeIndex)<<32)+uint64(i))
}
t.nodes[nodeIndex].TagCount = 0
// put them back
deleteCount := 0
keepCount := 0
for _, tag := range buf {
if matchFunc(tag, matchTag) {
deleteCount++
} else {
// doesn't match - get to keep it
t.addTag(tag, nodeIndex, matchFunc, nil)
keepCount++
}
}
return deleteCount, keepCount
}
// Set the single value for a node - overwrites what's there
// Returns whether the tag count at this address was increased, and how many tags at this address
func (t *TreeV6) Set(address patricia.IPv6Address, tag float64) (bool, int) {
return t.add(address, tag,
func(float64, float64) bool { return true },
func(float64) float64 { return tag })
}
// Add adds a tag to the tree
// - if matchFunc is non-nil, it will be used to ensure uniqueness at this node
// - returns whether the tag count at this address was increased, and how many tags at this address
func (t *TreeV6) Add(address patricia.IPv6Address, tag float64, matchFunc MatchesFunc) (bool, int) {
return t.add(address, tag, matchFunc, nil)
}
// SetOrUpdate the single value for a node - overwrites what's there using updateFunc if present
// - returns whether the tag count at this address was increased, and how many tags at this address
func (t *TreeV6) SetOrUpdate(address patricia.IPv6Address, tag float64, updateFunc UpdatesFunc) (bool, int) {
return t.add(address, tag,
func(float64, float64) bool { return true },
updateFunc)
}
// AddOrUpdate adds a tag to the tree or update it if it already exists
// - if matchFunc is non-nil, it will be used to ensure uniqueness at this node
// - returns whether the tag count at this address was increased, and how many tags at this address
func (t *TreeV6) AddOrUpdate(address patricia.IPv6Address, tag float64, matchFunc MatchesFunc, updateFunc UpdatesFunc) (bool, int) {
return t.add(address, tag, matchFunc, updateFunc)
}
// add a tag to the tree, optionally updating the existing value
// - overwrites the first value in the list if updateFunc function is provided (tag is ignored in this case)
// - returns whether the tag count was increased, and the number of tags at this address
func (t *TreeV6) add(address patricia.IPv6Address, tag float64, matchFunc MatchesFunc, updateFunc UpdatesFunc) (bool, int) {
// make sure we have more than enough capacity before we start adding to the tree, which invalidates pointers into the array
if (len(t.availableIndexes) + cap(t.nodes)) < (len(t.nodes) + 10) {
temp := make([]treeNodeV6, len(t.nodes), (cap(t.nodes)+1)*2)
copy(temp, t.nodes)
t.nodes = temp
}
root := &t.nodes[1]
// handle root tags
if address.Length == 0 {
countIncreased := t.addTag(tag, 1, matchFunc, updateFunc)
return countIncreased, t.nodes[1].TagCount
}
// root node doesn't have any prefix, so find the starting point
nodeIndex := uint(0)
parent := root
if !address.IsLeftBitSet() {
if root.Left == 0 {
newNodeIndex := t.newNode(address, address.Length)
countIncreased := t.addTag(tag, newNodeIndex, matchFunc, updateFunc)
root.Left = newNodeIndex
return countIncreased, t.nodes[newNodeIndex].TagCount
}
nodeIndex = root.Left
} else {
if root.Right == 0 {
newNodeIndex := t.newNode(address, address.Length)
countIncreased := t.addTag(tag, newNodeIndex, matchFunc, updateFunc)
root.Right = newNodeIndex
return countIncreased, t.nodes[newNodeIndex].TagCount
}
nodeIndex = root.Right
}
for {
if nodeIndex == 0 {
panic("Trying to traverse nodeIndex=0")
}
node := &t.nodes[nodeIndex]
if node.prefixLength == 0 {
panic("Reached a node with no prefix")
}
matchCount := uint(node.MatchCount(address))
if matchCount == 0 {
panic(fmt.Sprintf("Should not have traversed to a node with no prefix match - node prefix length: %d; address prefix length: %d", node.prefixLength, address.Length))
}
if matchCount == address.Length {
// all the bits in the address matched
if matchCount == node.prefixLength {
// the whole prefix matched - we're done!
countIncreased := t.addTag(tag, nodeIndex, matchFunc, updateFunc)
return countIncreased, t.nodes[nodeIndex].TagCount
}
// the input address is shorter than the match found - need to create a new, intermediate parent
newNodeIndex := t.newNode(address, address.Length)
newNode := &t.nodes[newNodeIndex]
countIncreased := t.addTag(tag, newNodeIndex, matchFunc, updateFunc)
// the existing node loses those matching bits, and becomes a child of the new node
// shift
node.ShiftPrefix(matchCount)
if !node.IsLeftBitSet() {
newNode.Left = nodeIndex
} else {
newNode.Right = nodeIndex
}
// now give this new node a home
if parent.Left == nodeIndex {
parent.Left = newNodeIndex
} else {
if parent.Right != nodeIndex {
panic("node isn't left or right parent - should be impossible! (1)")
}
parent.Right = newNodeIndex
}
return countIncreased, t.nodes[newNodeIndex].TagCount
}
if matchCount == node.prefixLength {
// partial match - we have to keep traversing
// chop off what's matched so far
address.ShiftLeft(matchCount)
if !address.IsLeftBitSet() {
if node.Left == 0 {
// nowhere else to go - create a new node here
newNodeIndex := t.newNode(address, address.Length)
countIncreased := t.addTag(tag, newNodeIndex, matchFunc, updateFunc)
node.Left = newNodeIndex
return countIncreased, t.nodes[newNodeIndex].TagCount
}
// there's a node to the left - traverse it
parent = node
nodeIndex = node.Left
continue
}
// node didn't belong on the left, so it belongs on the right
if node.Right == 0 {
// nowhere else to go - create a new node here
newNodeIndex := t.newNode(address, address.Length)
countIncreased := t.addTag(tag, newNodeIndex, matchFunc, updateFunc)
node.Right = newNodeIndex
return countIncreased, t.nodes[newNodeIndex].TagCount
}
// there's a node to the right - traverse it
parent = node
nodeIndex = node.Right
continue
}
// partial match with this node - need to split this node
newCommonParentNodeIndex := t.newNode(address, matchCount)
newCommonParentNode := &t.nodes[newCommonParentNodeIndex]
// shift
address.ShiftLeft(matchCount)
newNodeIndex := t.newNode(address, address.Length)
countIncreased := t.addTag(tag, newNodeIndex, matchFunc, updateFunc)
// see where the existing node fits - left or right
node.ShiftPrefix(matchCount)
if !node.IsLeftBitSet() {
newCommonParentNode.Left = nodeIndex
newCommonParentNode.Right = newNodeIndex
} else {
newCommonParentNode.Right = nodeIndex
newCommonParentNode.Left = newNodeIndex
}
// now determine where the new node belongs
if parent.Left == nodeIndex {
parent.Left = newCommonParentNodeIndex
} else {
if parent.Right != nodeIndex {
panic("node isn't left or right parent - should be impossible! (2)")
}
parent.Right = newCommonParentNodeIndex
}
return countIncreased, t.nodes[newNodeIndex].TagCount
}
}
// Delete a tag from the tree if it matches matchVal, as determined by matchFunc. Returns how many tags are removed
// - use DeleteWithBuffer if you can reuse slices, to cut down on allocations
func (t *TreeV6) Delete(address patricia.IPv6Address, matchFunc MatchesFunc, matchVal float64) int {
return t.DeleteWithBuffer(nil, address, matchFunc, matchVal)
}
// DeleteWithBuffer a tag from the tree if it matches matchVal, as determined by matchFunc. Returns how many tags are removed
// - uses input slice to reduce allocations
func (t *TreeV6) DeleteWithBuffer(buf []float64, address patricia.IPv6Address, matchFunc MatchesFunc, matchVal float64) int {
// traverse the tree, finding the node and its parent
root := &t.nodes[1]
var parentIndex uint
var parent *treeNodeV6
var targetNode *treeNodeV6
var targetNodeIndex uint
if address.Length == 0 {
// caller just looking for root tags
targetNode = root
targetNodeIndex = 1
} else {
nodeIndex := uint(0)
parentIndex = 1
parent = root
if !address.IsLeftBitSet() {
nodeIndex = root.Left
} else {
nodeIndex = root.Right
}
// traverse the tree
for {
if nodeIndex == 0 {
return 0
}
node := &t.nodes[nodeIndex]
matchCount := node.MatchCount(address)
if matchCount < node.prefixLength {
// didn't match the entire node - we're done
return 0
}
if matchCount == address.Length {
// exact match - we're done
targetNode = node
targetNodeIndex = nodeIndex
break
}
// there's still more address - keep traversing
parentIndex = nodeIndex
parent = node
address.ShiftLeft(matchCount)
if !address.IsLeftBitSet() {
nodeIndex = node.Left
} else {
nodeIndex = node.Right
}
}
}
if targetNode == nil || targetNode.TagCount == 0 {
// no tags found
return 0
}
// delete matching tags
deleteCount, remainingTagCount := t.deleteTag(buf, targetNodeIndex, matchVal, matchFunc)
if remainingTagCount > 0 {
// target node still has tags - we're not deleting it
return deleteCount
}
t.deleteNode(targetNodeIndex, targetNode, parentIndex, parent)
return deleteCount
}
// deleteNode removes the provided node and compact the tree.
func (t *TreeV6) deleteNode(targetNodeIndex uint, targetNode *treeNodeV6, parentIndex uint, parent *treeNodeV6) (result deleteNodeResult) {
result = notDeleted
if targetNodeIndex == 1 {
// can't delete the root node
return result
}
// compact the tree, if possible
if targetNode.Left != 0 && targetNode.Right != 0 {
// target has two children - nothing we can do - not deleting the node
return result
} else if targetNode.Left != 0 {
// target node only has only left child
result = deletedNodeReplacedByChild
if parent.Left == targetNodeIndex {
parent.Left = targetNode.Left
} else {
parent.Right = targetNode.Left
}
// need to update the child node prefix to include target node's
tmpNode := &t.nodes[targetNode.Left]
tmpNode.MergeFromNodes(targetNode, tmpNode)
} else if targetNode.Right != 0 {
// target node has only right child
result = deletedNodeReplacedByChild
if parent.Left == targetNodeIndex {
parent.Left = targetNode.Right
} else {
parent.Right = targetNode.Right
}
// need to update the child node prefix to include target node's
tmpNode := &t.nodes[targetNode.Right]
tmpNode.MergeFromNodes(targetNode, tmpNode)
} else {
// target node has no children - straight-up remove this node
result = deletedNodeJustRemoved
if parent.Left == targetNodeIndex {
parent.Left = 0
if parentIndex > 1 && parent.TagCount == 0 && parent.Right != 0 {
// parent isn't root, has no tags, and there's a sibling - merge sibling into parent
result = deletedNodeParentReplacedBySibling
siblingIndexToDelete := parent.Right
tmpNode := &t.nodes[siblingIndexToDelete]
parent.MergeFromNodes(parent, tmpNode)
// move tags
t.moveTags(siblingIndexToDelete, parentIndex)
// parent now gets target's sibling's children
parent.Left = t.nodes[siblingIndexToDelete].Left
parent.Right = t.nodes[siblingIndexToDelete].Right
t.availableIndexes = append(t.availableIndexes, siblingIndexToDelete)
}
} else {
parent.Right = 0
if parentIndex > 1 && parent.TagCount == 0 && parent.Left != 0 {
// parent isn't root, has no tags, and there's a sibling - merge sibling into parent
result = deletedNodeParentReplacedBySibling
siblingIndexToDelete := parent.Left
tmpNode := &t.nodes[siblingIndexToDelete]
parent.MergeFromNodes(parent, tmpNode)
// move tags
t.moveTags(siblingIndexToDelete, parentIndex)
// parent now gets target's sibling's children
parent.Right = t.nodes[parent.Left].Right
parent.Left = t.nodes[parent.Left].Left
t.availableIndexes = append(t.availableIndexes, siblingIndexToDelete)
}
}
}
targetNode.Left = 0
targetNode.Right = 0
t.availableIndexes = append(t.availableIndexes, targetNodeIndex)
return result
}
// FindTagsWithFilter finds all matching tags that passes the filter function
// - use FindTagsWithFilterAppend if you can reuse slices, to cut down on allocations
func (t *TreeV6) FindTagsWithFilter(address patricia.IPv6Address, filterFunc FilterFunc) []float64 {
ret := make([]float64, 0)
return t.FindTagsWithFilterAppend(ret, address, filterFunc)
}
// FindTagsAppend finds all matching tags for given address and appends them to ret
func (t *TreeV6) FindTagsAppend(ret []float64, address patricia.IPv6Address) []float64 {
return t.FindTagsWithFilterAppend(ret, address, nil)
}
// FindTags finds all matching tags for given address
// - use FindTagsAppend if you can reuse slices, to cut down on allocations
func (t *TreeV6) FindTags(address patricia.IPv6Address) []float64 {
ret := make([]float64, 0)
return t.FindTagsAppend(ret, address)
}
// FindTagsWithFilterAppend finds all matching tags that passes the filter function
// - results are appended to the input slice
func (t *TreeV6) FindTagsWithFilterAppend(ret []float64, address patricia.IPv6Address, filterFunc FilterFunc) []float64 {
var matchCount uint
root := &t.nodes[1]
if root.TagCount > 0 {
ret = t.tagsForNode(ret, 1, filterFunc)
}
if address.Length == 0 {
// caller just looking for root tags
return ret
}
var nodeIndex uint
if !address.IsLeftBitSet() {
nodeIndex = root.Left
} else {
nodeIndex = root.Right
}
// traverse the tree
for {
if nodeIndex == 0 {
return ret
}
node := &t.nodes[nodeIndex]
matchCount = node.MatchCount(address)
if matchCount < node.prefixLength {
// didn't match the entire node - we're done
return ret
}
// matched the full node - get its tags, then chop off the bits we've already matched and continue
if node.TagCount > 0 {
ret = t.tagsForNode(ret, nodeIndex, filterFunc)
}
if matchCount == address.Length {
// exact match - we're done
return ret
}
// there's still more address - keep traversing
address.ShiftLeft(matchCount)
if !address.IsLeftBitSet() {
nodeIndex = node.Left
} else {
nodeIndex = node.Right
}
}
}
// FindDeepestTag finds a tag at the deepest level in the tree, representing the closest match.
// - if that target node has multiple tags, the first in the list is returned
func (t *TreeV6) FindDeepestTag(address patricia.IPv6Address) (bool, float64) {
root := &t.nodes[1]
var found bool
var ret float64
if root.TagCount > 0 {
ret = t.firstTagForNode(1)
found = true
}
if address.Length == 0 {
// caller just looking for root tags
return found, ret
}
var nodeIndex uint
if !address.IsLeftBitSet() {
nodeIndex = root.Left
} else {
nodeIndex = root.Right
}
// traverse the tree
for {
if nodeIndex == 0 {
return found, ret
}
node := &t.nodes[nodeIndex]
matchCount := node.MatchCount(address)
if matchCount < node.prefixLength {
// didn't match the entire node - we're done
return found, ret
}
// matched the full node - get its tags, then chop off the bits we've already matched and continue
if node.TagCount > 0 {
ret = t.firstTagForNode(nodeIndex)
found = true
}
if matchCount == address.Length {
// exact match - we're done
return found, ret
}
// there's still more address - keep traversing
address.ShiftLeft(matchCount)
if !address.IsLeftBitSet() {
nodeIndex = node.Left
} else {
nodeIndex = node.Right
}
}
}
// FindDeepestTags finds all tags at the deepest level in the tree, representing the closest match
// - use FindDeepestTagsAppend if you can reuse slices, to cut down on allocations
func (t *TreeV6) FindDeepestTags(address patricia.IPv6Address) (bool, []float64) {
ret := make([]float64, 0)
return t.FindDeepestTagsWithFilterAppend(ret, address, nil)
}
// FindDeepestTagsWithFilter finds all tags at the deepest level in the tree, matching the provided filter, representing the closest match
// - use FindDeepestTagsWithFilterAppend if you can reuse slices, to cut down on allocations
// - returns true regardless of the result of the filtering function
func (t *TreeV6) FindDeepestTagsWithFilter(address patricia.IPv6Address, filterFunc FilterFunc) (bool, []float64) {
ret := make([]float64, 0)
return t.FindDeepestTagsWithFilterAppend(ret, address, filterFunc)
}
// FindDeepestTagsAppend finds all tags at the deepest level in the tree, representing the closest match
// - appends results to the input slice
func (t *TreeV6) FindDeepestTagsAppend(ret []float64, address patricia.IPv6Address) (bool, []float64) {
return t.FindDeepestTagsWithFilterAppend(ret, address, nil)
}
// FindDeepestTagsWithFilterAppend finds all tags at the deepest level in the tree, matching the provided filter, representing the closest match
// - appends results to the input slice
// - returns true regardless of the result of the filtering function
func (t *TreeV6) FindDeepestTagsWithFilterAppend(ret []float64, address patricia.IPv6Address, filterFunc FilterFunc) (bool, []float64) {
root := &t.nodes[1]
var found bool
var retTagIndex uint
if root.TagCount > 0 {
retTagIndex = 1
found = true
}
if address.Length == 0 {
// caller just looking for root tags
return found, t.tagsForNode(ret, retTagIndex, filterFunc)
}
var nodeIndex uint
if !address.IsLeftBitSet() {
nodeIndex = root.Left
} else {
nodeIndex = root.Right
}
// traverse the tree
for {
if nodeIndex == 0 {
return found, t.tagsForNode(ret, retTagIndex, filterFunc)
}
node := &t.nodes[nodeIndex]
matchCount := node.MatchCount(address)
if matchCount < node.prefixLength {
// didn't match the entire node - we're done
return found, t.tagsForNode(ret, retTagIndex, filterFunc)
}
// matched the full node - get its tags, then chop off the bits we've already matched and continue
if node.TagCount > 0 {
retTagIndex = nodeIndex
found = true
}
if matchCount == address.Length {
// exact match - we're done
return found, t.tagsForNode(ret, retTagIndex, filterFunc)
}
// there's still more address - keep traversing
address.ShiftLeft(matchCount)
if !address.IsLeftBitSet() {
nodeIndex = node.Left
} else {
nodeIndex = node.Right
}
}
}
// TreeIteratorV6 is a stateful iterator over a tree.
type TreeIteratorV6 struct {
t *TreeV6
nodeIndex uint
nodeHistory []uint
next treeIteratorNext
}
// Iterate returns an iterator to find all nodes from a tree. It is
// important for the tree to not be modified while using the iterator.
func (t *TreeV6) Iterate() *TreeIteratorV6 {
return &TreeIteratorV6{
t: t,
nodeIndex: 1,
nodeHistory: []uint{},
next: nextSelf,
}
}
// Next jumps to the next element of a tree. It returns false if there
// is none.
func (iter *TreeIteratorV6) Next() bool {
for {
node := &iter.t.nodes[iter.nodeIndex]
if iter.next == nextSelf {
iter.next = nextLeft
if node.TagCount != 0 {
return true
}
}
if iter.next == nextLeft {
if node.Left != 0 {
iter.nodeHistory = append(iter.nodeHistory, iter.nodeIndex)
iter.nodeIndex = node.Left
iter.next = nextSelf
} else {
iter.next = nextRight
}
}
if iter.next == nextRight {
if node.Right != 0 {
iter.nodeHistory = append(iter.nodeHistory, iter.nodeIndex)
iter.nodeIndex = node.Right
iter.next = nextSelf
} else {
// We need to backtrack
iter.next = nextUp
}
}
if iter.next == nextUp {
nodeHistoryLen := len(iter.nodeHistory)
if nodeHistoryLen == 0 {
return false
}
previousIndex := iter.nodeHistory[nodeHistoryLen-1]
previousNode := iter.t.nodes[previousIndex]
iter.nodeHistory = iter.nodeHistory[:nodeHistoryLen-1]
if previousNode.Left == iter.nodeIndex {
iter.nodeIndex = previousIndex
iter.next = nextRight
} else if previousNode.Right == iter.nodeIndex {
iter.nodeIndex = previousIndex
iter.next = nextUp
} else {
panic("unexpected state")
}
}
}
}
// Tags returns the current tags for the iterator. This is not a copy
// and the result should not be used outside the iterator.
func (iter *TreeIteratorV6) Tags() []float64 {
return iter.TagsWithBuffer(nil)
}
// TagsWithBuffer returns the current tags for the iterator. To avoid
// allocation, it uses the provided buffer.
func (iter *TreeIteratorV6) TagsWithBuffer(ret []float64) []float64 {
return iter.t.tagsForNode(ret, uint(iter.nodeIndex), nil)
}
// Delete a tag from the current node if it matches matchVal, as
// determined by matchFunc. Returns how many tags are removed
// - use DeleteWithBuffer if you can reuse slices, to cut down on allocations
func (iter *TreeIteratorV6) Delete(matchFunc MatchesFunc, matchVal float64) int {
return iter.DeleteWithBuffer(nil, matchFunc, matchVal)
}
// DeleteWithBuffer a tag from the current node if it matches
// matchVal, as determined by matchFunc. Returns how many tags are
// removed
// - uses input slice to reduce allocations
func (iter *TreeIteratorV6) DeleteWithBuffer(buf []float64, matchFunc MatchesFunc, matchVal float64) int {
deleteCount, remainingTagCount := iter.t.deleteTag(buf, iter.nodeIndex, matchVal, matchFunc)
if remainingTagCount > 0 || iter.nodeIndex == 1 {
return deleteCount
}
nodeHistoryLen := len(iter.nodeHistory)
currentIndex := iter.nodeIndex
current := &iter.t.nodes[currentIndex]
parentIndex := iter.nodeHistory[nodeHistoryLen-1]
parent := &iter.t.nodes[parentIndex]
wasLeft := false
if parent.Left == currentIndex {
wasLeft = true
}
result := iter.t.deleteNode(currentIndex, current, parentIndex, parent)
switch result {
case notDeleted:
return deleteCount
case deletedNodeReplacedByChild:
// Continue with the child
if wasLeft {
iter.nodeIndex = parent.Left
} else {
iter.nodeIndex = parent.Right
}
iter.next = nextSelf
case deletedNodeParentReplacedBySibling:
iter.nodeIndex = parentIndex
iter.nodeHistory = iter.nodeHistory[:nodeHistoryLen-1]
if wasLeft {
// Parent replaced by right sibling, to visit
iter.next = nextSelf
} else {
// Parent replaced by left sibling, already visited
iter.next = nextUp
}
case deletedNodeJustRemoved:
iter.nodeIndex = parentIndex
iter.nodeHistory = iter.nodeHistory[:nodeHistoryLen-1]
if wasLeft {
// Visit our sibling
iter.next = nextRight
} else {
// Go up
iter.next = nextUp
}
}
return deleteCount
}
// note: this is only used for unit testing
// nolint
func (t *TreeV6) countNodes(nodeIndex uint) int {
nodeCount := 1
node := &t.nodes[nodeIndex]
if node.Left != 0 {
nodeCount += t.countNodes(node.Left)
}
if node.Right != 0 {
nodeCount += t.countNodes(node.Right)
}
return nodeCount
}
// note: this is only used for unit testing
// nolint
func (t *TreeV6) countTags(nodeIndex uint) int {
node := &t.nodes[nodeIndex]
tagCount := node.TagCount
if node.Left != 0 {
tagCount += t.countTags(node.Left)
}
if node.Right != 0 {
tagCount += t.countTags(node.Right)
}
return tagCount
}
|