1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
package compress
import (
"crypto/rand"
"encoding/base32"
"io/ioutil"
"strconv"
"strings"
"testing"
"github.com/klauspost/compress/flate"
"github.com/klauspost/compress/gzip"
)
func BenchmarkEstimate(b *testing.B) {
b.ReportAllocs()
// (predictable, low entropy distibution)
b.Run("zeroes-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (predictable, high entropy distibution)
b.Run("predictable-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
for i := range testData {
testData[i] = byte(float64(i) / float64(len(testData)) * 256)
}
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-500b", func(b *testing.B) {
var testData = make([]byte, 500)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-50k", func(b *testing.B) {
var testData = make([]byte, 50000)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-500k", func(b *testing.B) {
var testData = make([]byte, 500000)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (not predictable, medium entropy distibution)
b.Run("base-32-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
rand.Read(testData)
s := base32.StdEncoding.EncodeToString(testData)
testData = []byte(s)
testData = testData[:5000]
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
// (medium predictable, medium entropy distibution)
b.Run("text", func(b *testing.B) {
var testData = []byte(`If compression is done per-chunk, care should be taken that it doesn't leave restic backups open to watermarking/fingerprinting attacks.
This is essentially the same problem we discussed related to fingerprinting the CDC deduplication process:
With "naive" CDC, a "known plaintext" file can be verified to exist within the backup if the size of individual blocks can be observed by an attacker, by using CDC on the file in parallel and comparing the resulting amount of chunks and individual chunk lengths.
As discussed earlier, this can be somewhat mitigated by salting the CDC algorithm with a secret value, as done in attic.
With salted CDC, I assume compression would happen on each individual chunk, after splitting the problematic file into chunks. Restic chunks are in the range of 512 KB to 8 MB (but not evenly distributed - right?).
Attacker knows that the CDC algorithm uses a secret salt, so the attacker generates a range of chunks consisting of the first 512 KB to 8 MB of the file, one for each valid chunk length. The attacker is also able to determine the lengths of compressed chunks.
The attacker then compresses that chunk using the compression algorithm.
The attacker compares the lengths of the resulting chunks to the first chunk in the restic backup sets.
IF a matching block length is found, the attacker repeats the exercise with the next chunk, and the next chunk, and the next chunk, ... and the next chunk.
It is my belief that with sufficiently large files, and considering the fact that the CDC algorithm is "biased" (in lack of better of words) towards generating blocks of about 1 MB, this would be sufficient to ascertain whether or not a certain large file exists in the backup.
AS always, a paranoid and highly unscientific stream of consciousness.
Thoughts?`)
testData = append(testData, testData...)
testData = append(testData, testData...)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
Estimate(testData)
}
b.Log(Estimate(testData))
})
}
func BenchmarkSnannonEntropyBits(b *testing.B) {
b.ReportAllocs()
// (predictable, low entropy distibution)
b.Run("zeroes-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (predictable, high entropy distibution)
b.Run("predictable-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
for i := range testData {
testData[i] = byte(float64(i) / float64(len(testData)) * 256)
}
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-500b", func(b *testing.B) {
var testData = make([]byte, 500)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-50k", func(b *testing.B) {
var testData = make([]byte, 50000)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (not predictable, high entropy distibution)
b.Run("random-500k", func(b *testing.B) {
var testData = make([]byte, 500000)
rand.Read(testData)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (not predictable, medium entropy distibution)
b.Run("base-32-5k", func(b *testing.B) {
var testData = make([]byte, 5000)
rand.Read(testData)
s := base32.StdEncoding.EncodeToString(testData)
testData = []byte(s)
testData = testData[:5000]
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
// (medium predictable, medium entropy distibution)
b.Run("text", func(b *testing.B) {
var testData = []byte(`If compression is done per-chunk, care should be taken that it doesn't leave restic backups open to watermarking/fingerprinting attacks.
This is essentially the same problem we discussed related to fingerprinting the CDC deduplication process:
With "naive" CDC, a "known plaintext" file can be verified to exist within the backup if the size of individual blocks can be observed by an attacker, by using CDC on the file in parallel and comparing the resulting amount of chunks and individual chunk lengths.
As discussed earlier, this can be somewhat mitigated by salting the CDC algorithm with a secret value, as done in attic.
With salted CDC, I assume compression would happen on each individual chunk, after splitting the problematic file into chunks. Restic chunks are in the range of 512 KB to 8 MB (but not evenly distributed - right?).
Attacker knows that the CDC algorithm uses a secret salt, so the attacker generates a range of chunks consisting of the first 512 KB to 8 MB of the file, one for each valid chunk length. The attacker is also able to determine the lengths of compressed chunks.
The attacker then compresses that chunk using the compression algorithm.
The attacker compares the lengths of the resulting chunks to the first chunk in the restic backup sets.
IF a matching block length is found, the attacker repeats the exercise with the next chunk, and the next chunk, and the next chunk, ... and the next chunk.
It is my belief that with sufficiently large files, and considering the fact that the CDC algorithm is "biased" (in lack of better of words) towards generating blocks of about 1 MB, this would be sufficient to ascertain whether or not a certain large file exists in the backup.
AS always, a paranoid and highly unscientific stream of consciousness.
Thoughts?`)
testData = append(testData, testData...)
testData = append(testData, testData...)
b.SetBytes(int64(len(testData)))
b.ResetTimer()
for i := 0; i < b.N; i++ {
ShannonEntropyBits(testData)
}
b.Log(ShannonEntropyBits(testData))
})
}
func BenchmarkCompressAllocations(b *testing.B) {
payload := []byte(strings.Repeat("Tiny payload", 20))
for j := -2; j <= 9; j++ {
b.Run("level("+strconv.Itoa(j)+")", func(b *testing.B) {
b.Run("flate", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
w, err := flate.NewWriter(ioutil.Discard, j)
if err != nil {
b.Fatal(err)
}
w.Write(payload)
w.Close()
}
})
b.Run("gzip", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
w, err := gzip.NewWriterLevel(ioutil.Discard, j)
if err != nil {
b.Fatal(err)
}
w.Write(payload)
w.Close()
}
})
})
}
}
func BenchmarkCompressAllocationsSingle(b *testing.B) {
payload := []byte(strings.Repeat("Tiny payload", 20))
const level = 2
b.Run("flate", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
w, err := flate.NewWriter(ioutil.Discard, level)
if err != nil {
b.Fatal(err)
}
w.Write(payload)
w.Close()
}
})
b.Run("gzip", func(b *testing.B) {
b.ReportAllocs()
for i := 0; i < b.N; i++ {
w, err := gzip.NewWriterLevel(ioutil.Discard, level)
if err != nil {
b.Fatal(err)
}
w.Write(payload)
w.Close()
}
})
}
|