1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
// Copyright 2023+ Klaus Post. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package dict
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"io"
"math/rand"
"sort"
"time"
"github.com/klauspost/compress/s2"
"github.com/klauspost/compress/zstd"
)
type match struct {
hash uint32
n uint32
offset int64
}
type matchValue struct {
value []byte
followBy map[uint32]uint32
preceededBy map[uint32]uint32
}
type Options struct {
// MaxDictSize is the max size of the backreference dictionary.
MaxDictSize int
// HashBytes is the minimum length to index.
// Must be >=4 and <=8
HashBytes int
// Debug output
Output io.Writer
// ZstdDictID is the Zstd dictionary ID to use.
// Leave at zero to generate a random ID.
ZstdDictID uint32
// ZstdDictCompat will make the dictionary compatible with Zstd v1.5.5 and earlier.
// See https://github.com/facebook/zstd/issues/3724
ZstdDictCompat bool
// Use the specified encoder level for Zstandard dictionaries.
// The dictionary will be built using the specified encoder level,
// which will reflect speed and make the dictionary tailored for that level.
// If not set zstd.SpeedBestCompression will be used.
ZstdLevel zstd.EncoderLevel
outFormat int
}
const (
formatRaw = iota
formatZstd
formatS2
)
// BuildZstdDict will build a Zstandard dictionary from the provided input.
func BuildZstdDict(input [][]byte, o Options) ([]byte, error) {
o.outFormat = formatZstd
if o.ZstdDictID == 0 {
rng := rand.New(rand.NewSource(time.Now().UnixNano()))
o.ZstdDictID = 32768 + uint32(rng.Int31n((1<<31)-32768))
}
return buildDict(input, o)
}
// BuildS2Dict will build a S2 dictionary from the provided input.
func BuildS2Dict(input [][]byte, o Options) ([]byte, error) {
o.outFormat = formatS2
if o.MaxDictSize > s2.MaxDictSize {
return nil, errors.New("max dict size too large")
}
return buildDict(input, o)
}
// BuildRawDict will build a raw dictionary from the provided input.
// This can be used for deflate, lz4 and others.
func BuildRawDict(input [][]byte, o Options) ([]byte, error) {
o.outFormat = formatRaw
return buildDict(input, o)
}
func buildDict(input [][]byte, o Options) ([]byte, error) {
matches := make(map[uint32]uint32)
offsets := make(map[uint32]int64)
var total uint64
wantLen := o.MaxDictSize
hashBytes := o.HashBytes
if len(input) == 0 {
return nil, fmt.Errorf("no input provided")
}
if hashBytes < 4 || hashBytes > 8 {
return nil, fmt.Errorf("HashBytes must be >= 4 and <= 8")
}
println := func(args ...interface{}) {
if o.Output != nil {
fmt.Fprintln(o.Output, args...)
}
}
printf := func(s string, args ...interface{}) {
if o.Output != nil {
fmt.Fprintf(o.Output, s, args...)
}
}
found := make(map[uint32]struct{})
for i, b := range input {
for k := range found {
delete(found, k)
}
for i := range b {
rem := b[i:]
if len(rem) < 8 {
break
}
h := hashLen(binary.LittleEndian.Uint64(rem), 32, uint8(hashBytes))
if _, ok := found[h]; ok {
// Only count first occurrence
continue
}
matches[h]++
offsets[h] += int64(i)
total++
found[h] = struct{}{}
}
printf("\r input %d indexed...", i)
}
threshold := uint32(total / uint64(len(matches)))
println("\nTotal", total, "match", len(matches), "avg", threshold)
sorted := make([]match, 0, len(matches)/2)
for k, v := range matches {
if v <= threshold {
continue
}
sorted = append(sorted, match{hash: k, n: v, offset: offsets[k]})
}
sort.Slice(sorted, func(i, j int) bool {
if true {
// Group very similar counts together and emit low offsets first.
// This will keep together strings that are very similar.
deltaN := int(sorted[i].n) - int(sorted[j].n)
if deltaN < 0 {
deltaN = -deltaN
}
if uint32(deltaN) < sorted[i].n/32 {
return sorted[i].offset < sorted[j].offset
}
} else {
if sorted[i].n == sorted[j].n {
return sorted[i].offset < sorted[j].offset
}
}
return sorted[i].n > sorted[j].n
})
println("Sorted len:", len(sorted))
if len(sorted) > wantLen {
sorted = sorted[:wantLen]
}
lowestOcc := sorted[len(sorted)-1].n
println("Cropped len:", len(sorted), "Lowest occurrence:", lowestOcc)
wantMatches := make(map[uint32]uint32, len(sorted))
for _, v := range sorted {
wantMatches[v.hash] = v.n
}
output := make(map[uint32]matchValue, len(sorted))
var remainCnt [256]int
var remainTotal int
var firstOffsets []int
for i, b := range input {
for i := range b {
rem := b[i:]
if len(rem) < 8 {
break
}
var prev []byte
if i > hashBytes {
prev = b[i-hashBytes:]
}
h := hashLen(binary.LittleEndian.Uint64(rem), 32, uint8(hashBytes))
if _, ok := wantMatches[h]; !ok {
remainCnt[rem[0]]++
remainTotal++
continue
}
mv := output[h]
if len(mv.value) == 0 {
var tmp = make([]byte, hashBytes)
copy(tmp[:], rem)
mv.value = tmp[:]
}
if mv.followBy == nil {
mv.followBy = make(map[uint32]uint32, 4)
mv.preceededBy = make(map[uint32]uint32, 4)
}
if len(rem) > hashBytes+8 {
// Check if we should add next as well.
hNext := hashLen(binary.LittleEndian.Uint64(rem[hashBytes:]), 32, uint8(hashBytes))
if _, ok := wantMatches[hNext]; ok {
mv.followBy[hNext]++
}
}
if len(prev) >= 8 {
// Check if we should prev next as well.
hPrev := hashLen(binary.LittleEndian.Uint64(prev), 32, uint8(hashBytes))
if _, ok := wantMatches[hPrev]; ok {
mv.preceededBy[hPrev]++
}
}
output[h] = mv
}
printf("\rinput %d re-indexed...", i)
}
println("")
dst := make([][]byte, 0, wantLen/hashBytes)
added := 0
const printUntil = 500
for i, e := range sorted {
if added > o.MaxDictSize {
println("Ending. Next Occurrence:", e.n)
break
}
m, ok := output[e.hash]
if !ok {
// Already added
continue
}
wantLen := e.n / uint32(hashBytes) / 4
if wantLen <= lowestOcc {
wantLen = lowestOcc
}
var tmp = make([]byte, 0, hashBytes*2)
{
sortedPrev := make([]match, 0, len(m.followBy))
for k, v := range m.preceededBy {
if _, ok := output[k]; v < wantLen || !ok {
continue
}
sortedPrev = append(sortedPrev, match{
hash: k,
n: v,
})
}
if len(sortedPrev) > 0 {
sort.Slice(sortedPrev, func(i, j int) bool {
return sortedPrev[i].n > sortedPrev[j].n
})
bestPrev := output[sortedPrev[0].hash]
tmp = append(tmp, bestPrev.value...)
}
}
tmp = append(tmp, m.value...)
delete(output, e.hash)
sortedFollow := make([]match, 0, len(m.followBy))
for {
var nh uint32 // Next hash
stopAfter := false
{
sortedFollow = sortedFollow[:0]
for k, v := range m.followBy {
if _, ok := output[k]; !ok {
continue
}
sortedFollow = append(sortedFollow, match{
hash: k,
n: v,
offset: offsets[k],
})
}
if len(sortedFollow) == 0 {
// Step back
// Extremely small impact, but helps longer hashes a bit.
const stepBack = 2
if stepBack > 0 && len(tmp) >= hashBytes+stepBack {
var t8 [8]byte
copy(t8[:], tmp[len(tmp)-hashBytes-stepBack:])
m, ok = output[hashLen(binary.LittleEndian.Uint64(t8[:]), 32, uint8(hashBytes))]
if ok && len(m.followBy) > 0 {
found := []byte(nil)
for k := range m.followBy {
v, ok := output[k]
if !ok {
continue
}
found = v.value
break
}
if found != nil {
tmp = tmp[:len(tmp)-stepBack]
printf("Step back: %q + %q\n", string(tmp), string(found))
continue
}
}
break
} else {
if i < printUntil {
printf("FOLLOW: none after %q\n", string(m.value))
}
}
break
}
sort.Slice(sortedFollow, func(i, j int) bool {
if sortedFollow[i].n == sortedFollow[j].n {
return sortedFollow[i].offset > sortedFollow[j].offset
}
return sortedFollow[i].n > sortedFollow[j].n
})
nh = sortedFollow[0].hash
stopAfter = sortedFollow[0].n < wantLen
if stopAfter && i < printUntil {
printf("FOLLOW: %d < %d after %q. Stopping after this.\n", sortedFollow[0].n, wantLen, string(m.value))
}
}
m, ok = output[nh]
if !ok {
break
}
if len(tmp) > 0 {
// Delete all hashes that are in the current string to avoid stuttering.
var toDel [16 + 8]byte
copy(toDel[:], tmp[len(tmp)-hashBytes:])
copy(toDel[hashBytes:], m.value)
for i := range toDel[:hashBytes*2] {
delete(output, hashLen(binary.LittleEndian.Uint64(toDel[i:]), 32, uint8(hashBytes)))
}
}
tmp = append(tmp, m.value...)
//delete(output, nh)
if stopAfter {
// Last entry was no significant.
break
}
}
if i < printUntil {
printf("ENTRY %d: %q (%d occurrences, cutoff %d)\n", i, string(tmp), e.n, wantLen)
}
// Delete substrings already added.
if len(tmp) > hashBytes {
for j := range tmp[:len(tmp)-hashBytes+1] {
var t8 [8]byte
copy(t8[:], tmp[j:])
if i < printUntil {
//printf("* POST DELETE %q\n", string(t8[:hashBytes]))
}
delete(output, hashLen(binary.LittleEndian.Uint64(t8[:]), 32, uint8(hashBytes)))
}
}
dst = append(dst, tmp)
added += len(tmp)
// Find offsets
// TODO: This can be better if done as a global search.
if len(firstOffsets) < 3 {
if len(tmp) > 16 {
tmp = tmp[:16]
}
offCnt := make(map[int]int, len(input))
// Find first offsets
for _, b := range input {
off := bytes.Index(b, tmp)
if off == -1 {
continue
}
offCnt[off]++
}
for _, off := range firstOffsets {
// Very unlikely, but we deleted it just in case
delete(offCnt, off-added)
}
maxCnt := 0
maxOffset := 0
for k, v := range offCnt {
if v == maxCnt && k > maxOffset {
// Prefer the longer offset on ties , since it is more expensive to encode
maxCnt = v
maxOffset = k
continue
}
if v > maxCnt {
maxCnt = v
maxOffset = k
}
}
if maxCnt > 1 {
firstOffsets = append(firstOffsets, maxOffset+added)
println(" - Offset:", len(firstOffsets), "at", maxOffset+added, "count:", maxCnt, "total added:", added, "src index", maxOffset)
}
}
}
out := bytes.NewBuffer(nil)
written := 0
for i, toWrite := range dst {
if len(toWrite)+written > wantLen {
toWrite = toWrite[:wantLen-written]
}
dst[i] = toWrite
written += len(toWrite)
if written >= wantLen {
dst = dst[:i+1]
break
}
}
// Write in reverse order.
for i := range dst {
toWrite := dst[len(dst)-i-1]
out.Write(toWrite)
}
if o.outFormat == formatRaw {
return out.Bytes(), nil
}
if o.outFormat == formatS2 {
dOff := 0
dBytes := out.Bytes()
if len(dBytes) > s2.MaxDictSize {
dBytes = dBytes[:s2.MaxDictSize]
}
for _, off := range firstOffsets {
myOff := len(dBytes) - off
if myOff < 0 || myOff > s2.MaxDictSrcOffset {
continue
}
dOff = myOff
}
dict := s2.MakeDictManual(dBytes, uint16(dOff))
if dict == nil {
return nil, fmt.Errorf("unable to create s2 dictionary")
}
return dict.Bytes(), nil
}
offsetsZstd := [3]int{1, 4, 8}
for i, off := range firstOffsets {
if i >= 3 || off == 0 || off >= out.Len() {
break
}
offsetsZstd[i] = off
}
println("\nCompressing. Offsets:", offsetsZstd)
return zstd.BuildDict(zstd.BuildDictOptions{
ID: o.ZstdDictID,
Contents: input,
History: out.Bytes(),
Offsets: offsetsZstd,
CompatV155: o.ZstdDictCompat,
Level: o.ZstdLevel,
DebugOut: o.Output,
})
}
const (
prime3bytes = 506832829
prime4bytes = 2654435761
prime5bytes = 889523592379
prime6bytes = 227718039650203
prime7bytes = 58295818150454627
prime8bytes = 0xcf1bbcdcb7a56463
)
// hashLen returns a hash of the lowest l bytes of u for a size size of h bytes.
// l must be >=4 and <=8. Any other value will return hash for 4 bytes.
// h should always be <32.
// Preferably h and l should be a constant.
// LENGTH 4 is passed straight through
func hashLen(u uint64, hashLog, mls uint8) uint32 {
switch mls {
case 5:
return hash5(u, hashLog)
case 6:
return hash6(u, hashLog)
case 7:
return hash7(u, hashLog)
case 8:
return hash8(u, hashLog)
default:
return uint32(u)
}
}
// hash3 returns the hash of the lower 3 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <32.
func hash3(u uint32, h uint8) uint32 {
return ((u << (32 - 24)) * prime3bytes) >> ((32 - h) & 31)
}
// hash4 returns the hash of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <32.
func hash4(u uint32, h uint8) uint32 {
return (u * prime4bytes) >> ((32 - h) & 31)
}
// hash4x64 returns the hash of the lowest 4 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <32.
func hash4x64(u uint64, h uint8) uint32 {
return (uint32(u) * prime4bytes) >> ((32 - h) & 31)
}
// hash5 returns the hash of the lowest 5 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash5(u uint64, h uint8) uint32 {
return uint32(((u << (64 - 40)) * prime5bytes) >> ((64 - h) & 63))
}
// hash6 returns the hash of the lowest 6 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash6(u uint64, h uint8) uint32 {
return uint32(((u << (64 - 48)) * prime6bytes) >> ((64 - h) & 63))
}
// hash7 returns the hash of the lowest 7 bytes of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash7(u uint64, h uint8) uint32 {
return uint32(((u << (64 - 56)) * prime7bytes) >> ((64 - h) & 63))
}
// hash8 returns the hash of u to fit in a hash table with h bits.
// Preferably h should be a constant and should always be <64.
func hash8(u uint64, h uint8) uint32 {
return uint32((u * prime8bytes) >> ((64 - h) & 63))
}
|