1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
|
// Package huff0 provides fast huffman encoding as used in zstd.
//
// See README.md at https://github.com/klauspost/compress/tree/master/huff0 for details.
package huff0
import (
"errors"
"fmt"
"math"
"math/bits"
"sync"
"github.com/klauspost/compress/fse"
)
const (
maxSymbolValue = 255
// zstandard limits tablelog to 11, see:
// https://github.com/facebook/zstd/blob/dev/doc/zstd_compression_format.md#huffman-tree-description
tableLogMax = 11
tableLogDefault = 11
minTablelog = 5
huffNodesLen = 512
// BlockSizeMax is maximum input size for a single block uncompressed.
BlockSizeMax = 1<<18 - 1
)
var (
// ErrIncompressible is returned when input is judged to be too hard to compress.
ErrIncompressible = errors.New("input is not compressible")
// ErrUseRLE is returned from the compressor when the input is a single byte value repeated.
ErrUseRLE = errors.New("input is single value repeated")
// ErrTooBig is return if input is too large for a single block.
ErrTooBig = errors.New("input too big")
// ErrMaxDecodedSizeExceeded is return if input is too large for a single block.
ErrMaxDecodedSizeExceeded = errors.New("maximum output size exceeded")
)
type ReusePolicy uint8
const (
// ReusePolicyAllow will allow reuse if it produces smaller output.
ReusePolicyAllow ReusePolicy = iota
// ReusePolicyPrefer will re-use aggressively if possible.
// This will not check if a new table will produce smaller output,
// except if the current table is impossible to use or
// compressed output is bigger than input.
ReusePolicyPrefer
// ReusePolicyNone will disable re-use of tables.
// This is slightly faster than ReusePolicyAllow but may produce larger output.
ReusePolicyNone
// ReusePolicyMust must allow reuse and produce smaller output.
ReusePolicyMust
)
type Scratch struct {
count [maxSymbolValue + 1]uint32
// Per block parameters.
// These can be used to override compression parameters of the block.
// Do not touch, unless you know what you are doing.
// Out is output buffer.
// If the scratch is re-used before the caller is done processing the output,
// set this field to nil.
// Otherwise the output buffer will be re-used for next Compression/Decompression step
// and allocation will be avoided.
Out []byte
// OutTable will contain the table data only, if a new table has been generated.
// Slice of the returned data.
OutTable []byte
// OutData will contain the compressed data.
// Slice of the returned data.
OutData []byte
// MaxDecodedSize will set the maximum allowed output size.
// This value will automatically be set to BlockSizeMax if not set.
// Decoders will return ErrMaxDecodedSizeExceeded is this limit is exceeded.
MaxDecodedSize int
srcLen int
// MaxSymbolValue will override the maximum symbol value of the next block.
MaxSymbolValue uint8
// TableLog will attempt to override the tablelog for the next block.
// Must be <= 11 and >= 5.
TableLog uint8
// Reuse will specify the reuse policy
Reuse ReusePolicy
// WantLogLess allows to specify a log 2 reduction that should at least be achieved,
// otherwise the block will be returned as incompressible.
// The reduction should then at least be (input size >> WantLogLess)
// If WantLogLess == 0 any improvement will do.
WantLogLess uint8
symbolLen uint16 // Length of active part of the symbol table.
maxCount int // count of the most probable symbol
clearCount bool // clear count
actualTableLog uint8 // Selected tablelog.
prevTableLog uint8 // Tablelog for previous table
prevTable cTable // Table used for previous compression.
cTable cTable // compression table
dt dTable // decompression table
nodes []nodeElt
tmpOut [4][]byte
fse *fse.Scratch
decPool sync.Pool // *[4][256]byte buffers.
huffWeight [maxSymbolValue + 1]byte
}
// TransferCTable will transfer the previously used compression table.
func (s *Scratch) TransferCTable(src *Scratch) {
if cap(s.prevTable) < len(src.prevTable) {
s.prevTable = make(cTable, 0, maxSymbolValue+1)
}
s.prevTable = s.prevTable[:len(src.prevTable)]
copy(s.prevTable, src.prevTable)
s.prevTableLog = src.prevTableLog
}
func (s *Scratch) prepare(in []byte) (*Scratch, error) {
if len(in) > BlockSizeMax {
return nil, ErrTooBig
}
if s == nil {
s = &Scratch{}
}
if s.MaxSymbolValue == 0 {
s.MaxSymbolValue = maxSymbolValue
}
if s.TableLog == 0 {
s.TableLog = tableLogDefault
}
if s.TableLog > tableLogMax || s.TableLog < minTablelog {
return nil, fmt.Errorf(" invalid tableLog %d (%d -> %d)", s.TableLog, minTablelog, tableLogMax)
}
if s.MaxDecodedSize <= 0 || s.MaxDecodedSize > BlockSizeMax {
s.MaxDecodedSize = BlockSizeMax
}
if s.clearCount && s.maxCount == 0 {
for i := range s.count {
s.count[i] = 0
}
s.clearCount = false
}
if cap(s.Out) == 0 {
s.Out = make([]byte, 0, len(in))
}
s.Out = s.Out[:0]
s.OutTable = nil
s.OutData = nil
if cap(s.nodes) < huffNodesLen+1 {
s.nodes = make([]nodeElt, 0, huffNodesLen+1)
}
s.nodes = s.nodes[:0]
if s.fse == nil {
s.fse = &fse.Scratch{}
}
s.srcLen = len(in)
return s, nil
}
type cTable []cTableEntry
func (c cTable) write(s *Scratch) error {
var (
// precomputed conversion table
bitsToWeight [tableLogMax + 1]byte
huffLog = s.actualTableLog
// last weight is not saved.
maxSymbolValue = uint8(s.symbolLen - 1)
huffWeight = s.huffWeight[:256]
)
const (
maxFSETableLog = 6
)
// convert to weight
bitsToWeight[0] = 0
for n := uint8(1); n < huffLog+1; n++ {
bitsToWeight[n] = huffLog + 1 - n
}
// Acquire histogram for FSE.
hist := s.fse.Histogram()
hist = hist[:256]
for i := range hist[:16] {
hist[i] = 0
}
for n := uint8(0); n < maxSymbolValue; n++ {
v := bitsToWeight[c[n].nBits] & 15
huffWeight[n] = v
hist[v]++
}
// FSE compress if feasible.
if maxSymbolValue >= 2 {
huffMaxCnt := uint32(0)
huffMax := uint8(0)
for i, v := range hist[:16] {
if v == 0 {
continue
}
huffMax = byte(i)
if v > huffMaxCnt {
huffMaxCnt = v
}
}
s.fse.HistogramFinished(huffMax, int(huffMaxCnt))
s.fse.TableLog = maxFSETableLog
b, err := fse.Compress(huffWeight[:maxSymbolValue], s.fse)
if err == nil && len(b) < int(s.symbolLen>>1) {
s.Out = append(s.Out, uint8(len(b)))
s.Out = append(s.Out, b...)
return nil
}
// Unable to compress (RLE/uncompressible)
}
// write raw values as 4-bits (max : 15)
if maxSymbolValue > (256 - 128) {
// should not happen : likely means source cannot be compressed
return ErrIncompressible
}
op := s.Out
// special case, pack weights 4 bits/weight.
op = append(op, 128|(maxSymbolValue-1))
// be sure it doesn't cause msan issue in final combination
huffWeight[maxSymbolValue] = 0
for n := uint16(0); n < uint16(maxSymbolValue); n += 2 {
op = append(op, (huffWeight[n]<<4)|huffWeight[n+1])
}
s.Out = op
return nil
}
func (c cTable) estTableSize(s *Scratch) (sz int, err error) {
var (
// precomputed conversion table
bitsToWeight [tableLogMax + 1]byte
huffLog = s.actualTableLog
// last weight is not saved.
maxSymbolValue = uint8(s.symbolLen - 1)
huffWeight = s.huffWeight[:256]
)
const (
maxFSETableLog = 6
)
// convert to weight
bitsToWeight[0] = 0
for n := uint8(1); n < huffLog+1; n++ {
bitsToWeight[n] = huffLog + 1 - n
}
// Acquire histogram for FSE.
hist := s.fse.Histogram()
hist = hist[:256]
for i := range hist[:16] {
hist[i] = 0
}
for n := uint8(0); n < maxSymbolValue; n++ {
v := bitsToWeight[c[n].nBits] & 15
huffWeight[n] = v
hist[v]++
}
// FSE compress if feasible.
if maxSymbolValue >= 2 {
huffMaxCnt := uint32(0)
huffMax := uint8(0)
for i, v := range hist[:16] {
if v == 0 {
continue
}
huffMax = byte(i)
if v > huffMaxCnt {
huffMaxCnt = v
}
}
s.fse.HistogramFinished(huffMax, int(huffMaxCnt))
s.fse.TableLog = maxFSETableLog
b, err := fse.Compress(huffWeight[:maxSymbolValue], s.fse)
if err == nil && len(b) < int(s.symbolLen>>1) {
sz += 1 + len(b)
return sz, nil
}
// Unable to compress (RLE/uncompressible)
}
// write raw values as 4-bits (max : 15)
if maxSymbolValue > (256 - 128) {
// should not happen : likely means source cannot be compressed
return 0, ErrIncompressible
}
// special case, pack weights 4 bits/weight.
sz += 1 + int(maxSymbolValue/2)
return sz, nil
}
// estimateSize returns the estimated size in bytes of the input represented in the
// histogram supplied.
func (c cTable) estimateSize(hist []uint32) int {
nbBits := uint32(7)
for i, v := range c[:len(hist)] {
nbBits += uint32(v.nBits) * hist[i]
}
return int(nbBits >> 3)
}
// minSize returns the minimum possible size considering the shannon limit.
func (s *Scratch) minSize(total int) int {
nbBits := float64(7)
fTotal := float64(total)
for _, v := range s.count[:s.symbolLen] {
n := float64(v)
if n > 0 {
nbBits += math.Log2(fTotal/n) * n
}
}
return int(nbBits) >> 3
}
func highBit32(val uint32) (n uint32) {
return uint32(bits.Len32(val) - 1)
}
|