1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package flate
// Sort sorts data.
// It makes one call to data.Len to determine n, and O(n*log(n)) calls to
// data.Less and data.Swap. The sort is not guaranteed to be stable.
func sortByLiteral(data []literalNode) {
n := len(data)
quickSort(data, 0, n, maxDepth(n))
}
func quickSort(data []literalNode, a, b, maxDepth int) {
for b-a > 12 { // Use ShellSort for slices <= 12 elements
if maxDepth == 0 {
heapSort(data, a, b)
return
}
maxDepth--
mlo, mhi := doPivot(data, a, b)
// Avoiding recursion on the larger subproblem guarantees
// a stack depth of at most lg(b-a).
if mlo-a < b-mhi {
quickSort(data, a, mlo, maxDepth)
a = mhi // i.e., quickSort(data, mhi, b)
} else {
quickSort(data, mhi, b, maxDepth)
b = mlo // i.e., quickSort(data, a, mlo)
}
}
if b-a > 1 {
// Do ShellSort pass with gap 6
// It could be written in this simplified form cause b-a <= 12
for i := a + 6; i < b; i++ {
if data[i].literal < data[i-6].literal {
data[i], data[i-6] = data[i-6], data[i]
}
}
insertionSort(data, a, b)
}
}
func heapSort(data []literalNode, a, b int) {
first := a
lo := 0
hi := b - a
// Build heap with greatest element at top.
for i := (hi - 1) / 2; i >= 0; i-- {
siftDown(data, i, hi, first)
}
// Pop elements, largest first, into end of data.
for i := hi - 1; i >= 0; i-- {
data[first], data[first+i] = data[first+i], data[first]
siftDown(data, lo, i, first)
}
}
// siftDown implements the heap property on data[lo, hi).
// first is an offset into the array where the root of the heap lies.
func siftDown(data []literalNode, lo, hi, first int) {
root := lo
for {
child := 2*root + 1
if child >= hi {
break
}
if child+1 < hi && data[first+child].literal < data[first+child+1].literal {
child++
}
if data[first+root].literal > data[first+child].literal {
return
}
data[first+root], data[first+child] = data[first+child], data[first+root]
root = child
}
}
func doPivot(data []literalNode, lo, hi int) (midlo, midhi int) {
m := int(uint(lo+hi) >> 1) // Written like this to avoid integer overflow.
if hi-lo > 40 {
// Tukey's ``Ninther,'' median of three medians of three.
s := (hi - lo) / 8
medianOfThree(data, lo, lo+s, lo+2*s)
medianOfThree(data, m, m-s, m+s)
medianOfThree(data, hi-1, hi-1-s, hi-1-2*s)
}
medianOfThree(data, lo, m, hi-1)
// Invariants are:
// data[lo] = pivot (set up by ChoosePivot)
// data[lo < i < a] < pivot
// data[a <= i < b] <= pivot
// data[b <= i < c] unexamined
// data[c <= i < hi-1] > pivot
// data[hi-1] >= pivot
pivot := lo
a, c := lo+1, hi-1
for ; a < c && data[a].literal < data[pivot].literal; a++ {
}
b := a
for {
for ; b < c && data[pivot].literal > data[b].literal; b++ { // data[b] <= pivot
}
for ; b < c && data[pivot].literal < data[c-1].literal; c-- { // data[c-1] > pivot
}
if b >= c {
break
}
// data[b] > pivot; data[c-1] <= pivot
data[b], data[c-1] = data[c-1], data[b]
b++
c--
}
// If hi-c<3 then there are duplicates (by property of median of nine).
// Let's be a bit more conservative, and set border to 5.
protect := hi-c < 5
if !protect && hi-c < (hi-lo)/4 {
// Lets test some points for equality to pivot
dups := 0
if data[pivot].literal > data[hi-1].literal { // data[hi-1] = pivot
data[c], data[hi-1] = data[hi-1], data[c]
c++
dups++
}
if data[b-1].literal > data[pivot].literal { // data[b-1] = pivot
b--
dups++
}
// m-lo = (hi-lo)/2 > 6
// b-lo > (hi-lo)*3/4-1 > 8
// ==> m < b ==> data[m] <= pivot
if data[m].literal > data[pivot].literal { // data[m] = pivot
data[m], data[b-1] = data[b-1], data[m]
b--
dups++
}
// if at least 2 points are equal to pivot, assume skewed distribution
protect = dups > 1
}
if protect {
// Protect against a lot of duplicates
// Add invariant:
// data[a <= i < b] unexamined
// data[b <= i < c] = pivot
for {
for ; a < b && data[b-1].literal > data[pivot].literal; b-- { // data[b] == pivot
}
for ; a < b && data[a].literal < data[pivot].literal; a++ { // data[a] < pivot
}
if a >= b {
break
}
// data[a] == pivot; data[b-1] < pivot
data[a], data[b-1] = data[b-1], data[a]
a++
b--
}
}
// Swap pivot into middle
data[pivot], data[b-1] = data[b-1], data[pivot]
return b - 1, c
}
// Insertion sort
func insertionSort(data []literalNode, a, b int) {
for i := a + 1; i < b; i++ {
for j := i; j > a && data[j].literal < data[j-1].literal; j-- {
data[j], data[j-1] = data[j-1], data[j]
}
}
}
// maxDepth returns a threshold at which quicksort should switch
// to heapsort. It returns 2*ceil(lg(n+1)).
func maxDepth(n int) int {
var depth int
for i := n; i > 0; i >>= 1 {
depth++
}
return depth * 2
}
// medianOfThree moves the median of the three values data[m0], data[m1], data[m2] into data[m1].
func medianOfThree(data []literalNode, m1, m0, m2 int) {
// sort 3 elements
if data[m1].literal < data[m0].literal {
data[m1], data[m0] = data[m0], data[m1]
}
// data[m0] <= data[m1]
if data[m2].literal < data[m1].literal {
data[m2], data[m1] = data[m1], data[m2]
// data[m0] <= data[m2] && data[m1] < data[m2]
if data[m1].literal < data[m0].literal {
data[m1], data[m0] = data[m0], data[m1]
}
}
// now data[m0] <= data[m1] <= data[m2]
}
|