1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package crc32 implements the 32-bit cyclic redundancy check, or CRC-32,
// checksum. See https://en.wikipedia.org/wiki/Cyclic_redundancy_check for
// information.
//
// Polynomials are represented in LSB-first form also known as reversed representation.
//
// See https://en.wikipedia.org/wiki/Mathematics_of_cyclic_redundancy_checks#Reversed_representations_and_reciprocal_polynomials
// for information.
package crc32
import (
"encoding/binary"
"errors"
"hash"
"sync"
"sync/atomic"
)
// The size of a CRC-32 checksum in bytes.
const Size = 4
// Predefined polynomials.
const (
// IEEE is by far and away the most common CRC-32 polynomial.
// Used by ethernet (IEEE 802.3), v.42, fddi, gzip, zip, png, ...
IEEE = 0xedb88320
// Castagnoli's polynomial, used in iSCSI.
// Has better error detection characteristics than IEEE.
// https://dx.doi.org/10.1109/26.231911
Castagnoli = 0x82f63b78
// Koopman's polynomial.
// Also has better error detection characteristics than IEEE.
// https://dx.doi.org/10.1109/DSN.2002.1028931
Koopman = 0xeb31d82e
)
// Table is a 256-word table representing the polynomial for efficient processing.
type Table [256]uint32
// This file makes use of functions implemented in architecture-specific files.
// The interface that they implement is as follows:
//
// // archAvailableIEEE reports whether an architecture-specific CRC32-IEEE
// // algorithm is available.
// archAvailableIEEE() bool
//
// // archInitIEEE initializes the architecture-specific CRC3-IEEE algorithm.
// // It can only be called if archAvailableIEEE() returns true.
// archInitIEEE()
//
// // archUpdateIEEE updates the given CRC32-IEEE. It can only be called if
// // archInitIEEE() was previously called.
// archUpdateIEEE(crc uint32, p []byte) uint32
//
// // archAvailableCastagnoli reports whether an architecture-specific
// // CRC32-C algorithm is available.
// archAvailableCastagnoli() bool
//
// // archInitCastagnoli initializes the architecture-specific CRC32-C
// // algorithm. It can only be called if archAvailableCastagnoli() returns
// // true.
// archInitCastagnoli()
//
// // archUpdateCastagnoli updates the given CRC32-C. It can only be called
// // if archInitCastagnoli() was previously called.
// archUpdateCastagnoli(crc uint32, p []byte) uint32
// castagnoliTable points to a lazily initialized Table for the Castagnoli
// polynomial. MakeTable will always return this value when asked to make a
// Castagnoli table so we can compare against it to find when the caller is
// using this polynomial.
var castagnoliTable *Table
var castagnoliTable8 *slicing8Table
var updateCastagnoli func(crc uint32, p []byte) uint32
var haveCastagnoli atomic.Bool
var castagnoliInitOnce = sync.OnceFunc(func() {
castagnoliTable = simpleMakeTable(Castagnoli)
if archAvailableCastagnoli() {
archInitCastagnoli()
updateCastagnoli = archUpdateCastagnoli
} else {
// Initialize the slicing-by-8 table.
castagnoliTable8 = slicingMakeTable(Castagnoli)
updateCastagnoli = func(crc uint32, p []byte) uint32 {
return slicingUpdate(crc, castagnoliTable8, p)
}
}
haveCastagnoli.Store(true)
})
// IEEETable is the table for the [IEEE] polynomial.
var IEEETable = simpleMakeTable(IEEE)
// ieeeTable8 is the slicing8Table for IEEE
var ieeeTable8 *slicing8Table
var updateIEEE func(crc uint32, p []byte) uint32
var ieeeInitOnce = sync.OnceFunc(func() {
if archAvailableIEEE() {
archInitIEEE()
updateIEEE = archUpdateIEEE
} else {
// Initialize the slicing-by-8 table.
ieeeTable8 = slicingMakeTable(IEEE)
updateIEEE = func(crc uint32, p []byte) uint32 {
return slicingUpdate(crc, ieeeTable8, p)
}
}
})
// MakeTable returns a [Table] constructed from the specified polynomial.
// The contents of this [Table] must not be modified.
func MakeTable(poly uint32) *Table {
switch poly {
case IEEE:
ieeeInitOnce()
return IEEETable
case Castagnoli:
castagnoliInitOnce()
return castagnoliTable
default:
return simpleMakeTable(poly)
}
}
// digest represents the partial evaluation of a checksum.
type digest struct {
crc uint32
tab *Table
}
// New creates a new [hash.Hash32] computing the CRC-32 checksum using the
// polynomial represented by the [Table]. Its Sum method will lay the
// value out in big-endian byte order. The returned Hash32 also
// implements [encoding.BinaryMarshaler] and [encoding.BinaryUnmarshaler] to
// marshal and unmarshal the internal state of the hash.
func New(tab *Table) hash.Hash32 {
if tab == IEEETable {
ieeeInitOnce()
}
return &digest{0, tab}
}
// NewIEEE creates a new [hash.Hash32] computing the CRC-32 checksum using
// the [IEEE] polynomial. Its Sum method will lay the value out in
// big-endian byte order. The returned Hash32 also implements
// [encoding.BinaryMarshaler] and [encoding.BinaryUnmarshaler] to marshal
// and unmarshal the internal state of the hash.
func NewIEEE() hash.Hash32 { return New(IEEETable) }
func (d *digest) Size() int { return Size }
func (d *digest) BlockSize() int { return 1 }
func (d *digest) Reset() { d.crc = 0 }
const (
magic = "crc\x01"
marshaledSize = len(magic) + 4 + 4
)
func (d *digest) AppendBinary(b []byte) ([]byte, error) {
b = append(b, magic...)
b = binary.BigEndian.AppendUint32(b, tableSum(d.tab))
b = binary.BigEndian.AppendUint32(b, d.crc)
return b, nil
}
func (d *digest) MarshalBinary() ([]byte, error) {
return d.AppendBinary(make([]byte, 0, marshaledSize))
}
func (d *digest) UnmarshalBinary(b []byte) error {
if len(b) < len(magic) || string(b[:len(magic)]) != magic {
return errors.New("hash/crc32: invalid hash state identifier")
}
if len(b) != marshaledSize {
return errors.New("hash/crc32: invalid hash state size")
}
if tableSum(d.tab) != binary.BigEndian.Uint32(b[4:]) {
return errors.New("hash/crc32: tables do not match")
}
d.crc = binary.BigEndian.Uint32(b[8:])
return nil
}
func update(crc uint32, tab *Table, p []byte, checkInitIEEE bool) uint32 {
switch {
case haveCastagnoli.Load() && tab == castagnoliTable:
return updateCastagnoli(crc, p)
case tab == IEEETable:
if checkInitIEEE {
ieeeInitOnce()
}
return updateIEEE(crc, p)
default:
return simpleUpdate(crc, tab, p)
}
}
// Update returns the result of adding the bytes in p to the crc.
func Update(crc uint32, tab *Table, p []byte) uint32 {
// Unfortunately, because IEEETable is exported, IEEE may be used without a
// call to MakeTable. We have to make sure it gets initialized in that case.
return update(crc, tab, p, true)
}
func (d *digest) Write(p []byte) (n int, err error) {
// We only create digest objects through New() which takes care of
// initialization in this case.
d.crc = update(d.crc, d.tab, p, false)
return len(p), nil
}
func (d *digest) Sum32() uint32 { return d.crc }
func (d *digest) Sum(in []byte) []byte {
s := d.Sum32()
return append(in, byte(s>>24), byte(s>>16), byte(s>>8), byte(s))
}
// Checksum returns the CRC-32 checksum of data
// using the polynomial represented by the [Table].
func Checksum(data []byte, tab *Table) uint32 { return Update(0, tab, data) }
// ChecksumIEEE returns the CRC-32 checksum of data
// using the [IEEE] polynomial.
func ChecksumIEEE(data []byte) uint32 {
ieeeInitOnce()
return updateIEEE(0, data)
}
// tableSum returns the IEEE checksum of table t.
func tableSum(t *Table) uint32 {
var a [1024]byte
b := a[:0]
if t != nil {
for _, x := range t {
b = binary.BigEndian.AppendUint32(b, x)
}
}
return ChecksumIEEE(b)
}
|