1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
// Copyright 2017 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build ignore
// Generate the constant table associated with the poly used by the
// vpmsumd crc32 algorithm.
//
// go run gen_const_ppc64le.go
//
// generates crc32_table_ppc64le.s
// The following is derived from code written by Anton Blanchard
// <anton@au.ibm.com> found at https://github.com/antonblanchard/crc32-vpmsum.
// The original is dual licensed under GPL and Apache 2. As the copyright holder
// for the work, IBM has contributed this new work under the golang license.
// This code was written in Go based on the original C implementation.
// This is a tool needed to generate the appropriate constants needed for
// the vpmsum algorithm. It is included to generate new constant tables if
// new polynomial values are included in the future.
package main
import (
"bytes"
"fmt"
"os"
)
var blocking = 32 * 1024
func reflect_bits(b uint64, nr uint) uint64 {
var ref uint64
for bit := uint64(0); bit < uint64(nr); bit++ {
if (b & uint64(1)) == 1 {
ref |= (1 << (uint64(nr-1) - bit))
}
b = (b >> 1)
}
return ref
}
func get_remainder(poly uint64, deg uint, n uint) uint64 {
rem, _ := xnmodp(n, poly, deg)
return rem
}
func get_quotient(poly uint64, bits, n uint) uint64 {
_, div := xnmodp(n, poly, bits)
return div
}
// xnmodp returns two values, p and div:
// p is the representation of the binary polynomial x**n mod (x ** deg + "poly")
// That is p is the binary representation of the modulus polynomial except for its highest-order term.
// div is the binary representation of the polynomial x**n / (x ** deg + "poly")
func xnmodp(n uint, poly uint64, deg uint) (uint64, uint64) {
var mod, mask, high, div uint64
if n < deg {
div = 0
return poly, div
}
mask = 1<<deg - 1
poly &= mask
mod = poly
div = 1
deg--
n--
for n > deg {
high = (mod >> deg) & 1
div = (div << 1) | high
mod <<= 1
if high != 0 {
mod ^= poly
}
n--
}
return mod & mask, div
}
func main() {
w := new(bytes.Buffer)
// Standard: https://go.dev/s/generatedcode
fmt.Fprintln(w, `// Code generated by "go run gen_const_ppc64le.go"; DO NOT EDIT.`)
fmt.Fprintln(w)
fmt.Fprintln(w, `#include "textflag.h"`)
// These are the polynomials supported in vector now.
// If adding others, include the polynomial and a name
// to identify it.
genCrc32ConstTable(w, 0xedb88320, "IEEE")
genCrc32ConstTable(w, 0x82f63b78, "Cast")
genCrc32ConstTable(w, 0xeb31d82e, "Koop")
b := w.Bytes()
err := os.WriteFile("crc32_table_ppc64le.s", b, 0666)
if err != nil {
fmt.Fprintf(os.Stderr, "can't write output: %s\n", err)
}
}
func genCrc32ConstTable(w *bytes.Buffer, poly uint32, polyid string) {
ref_poly := reflect_bits(uint64(poly), 32)
fmt.Fprintf(w, "\n\t/* Reduce %d kbits to 1024 bits */\n", blocking*8)
j := 0
for i := (blocking * 8) - 1024; i > 0; i -= 1024 {
a := reflect_bits(get_remainder(ref_poly, 32, uint(i)), 32) << 1
b := reflect_bits(get_remainder(ref_poly, 32, uint(i+64)), 32) << 1
fmt.Fprintf(w, "\t/* x^%d mod p(x)%s, x^%d mod p(x)%s */\n", uint(i+64), "", uint(i), "")
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%016x\n", polyid, j*8, b)
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%016x\n", polyid, (j+1)*8, a)
j += 2
fmt.Fprintf(w, "\n")
}
for i := (1024 * 2) - 128; i >= 0; i -= 128 {
a := reflect_bits(get_remainder(ref_poly, 32, uint(i+32)), 32)
b := reflect_bits(get_remainder(ref_poly, 32, uint(i+64)), 32)
c := reflect_bits(get_remainder(ref_poly, 32, uint(i+96)), 32)
d := reflect_bits(get_remainder(ref_poly, 32, uint(i+128)), 32)
fmt.Fprintf(w, "\t/* x^%d mod p(x)%s, x^%d mod p(x)%s, x^%d mod p(x)%s, x^%d mod p(x)%s */\n", i+128, "", i+96, "", i+64, "", i+32, "")
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%08x%08x\n", polyid, j*8, c, d)
fmt.Fprintf(w, "DATA ·%sConst+%d(SB)/8,$0x%08x%08x\n", polyid, (j+1)*8, a, b)
j += 2
fmt.Fprintf(w, "\n")
}
fmt.Fprintf(w, "GLOBL ·%sConst(SB),RODATA,$4336\n", polyid)
fmt.Fprintf(w, "\n\t/* Barrett constant m - (4^32)/n */\n")
fmt.Fprintf(w, "DATA ·%sBarConst(SB)/8,$0x%016x\n", polyid, reflect_bits(get_quotient(ref_poly, 32, 64), 33))
fmt.Fprintf(w, "DATA ·%sBarConst+8(SB)/8,$0x0000000000000000\n", polyid)
fmt.Fprintf(w, "DATA ·%sBarConst+16(SB)/8,$0x%016x\n", polyid, reflect_bits((uint64(1)<<32)|ref_poly, 33)) // reflected?
fmt.Fprintf(w, "DATA ·%sBarConst+24(SB)/8,$0x0000000000000000\n", polyid)
fmt.Fprintf(w, "GLOBL ·%sBarConst(SB),RODATA,$32\n", polyid)
}
|