1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605
|
package statmodel
import (
"fmt"
"math"
"math/rand"
"strings"
"github.com/kshedden/dstream/dstream"
"gonum.org/v1/gonum/floats"
"gonum.org/v1/gonum/mat"
)
// Knockoff is a dstream that creates knockoff versions of variables
// from another dstream. The specific approach implemented here is
// the "equivariant knockoff" of Barber and Candes (2014). As with
// any other dstream transform, do not retain the source dstream after
// creating a knockoff from it.
type Knockoff struct {
data dstream.Dstream
// The variable names for the knockoff stream (original
// variables and their knockoff counterparts are included).
names []string
// The numbver of variables in the source data
nvarSource int
// Map from variable names to column position
varpos map[string]int
// Positions of the variables in the source data to knockoff
kopos []int
// The means of the variables being knocked-off.
mean []float64
// The L2-norms of the variables being knocked-off.
scale []float64
// The knockoff features are X*rmat + U*cmat where X are the
// actual features and U are orthogonal to X.
rmat []float64
cmat []float64
// The cross product matrix of the features
cpr []float64
// The minimum eigenvalue of cpr
lmin float64
// The sample size per slice and total sample size
nobs []int
ntot int
// The current chunk index
chunk int
// The current data arrays.
bdat [][]float64
}
// NewKnockoff creates a knockoff data stream from the given source
// data stream. A knockoff variable is constructed for each variable
// in 'kovars'. All knockoff variables (both the original and the
// knockoff version of the variable) are standardized. Variables not
// listed in kovars are retained but are not standardized or otherwise
// altered. The returned Knockoff struct value satisfies the dstream
// interface.
func NewKnockoff(data dstream.Dstream, kovars []string) (*Knockoff, error) {
// Map from variable names to column position.
mp := make(map[string]int)
for k, v := range data.Names() {
mp[v] = k
}
// Get the positions of the features to be analyzed via
// knockoff.
var kopos []int
for _, na := range kovars {
q, ok := mp[na]
if !ok {
msg := fmt.Sprintf("Variable '%s' not found\n", na)
panic(msg)
}
kopos = append(kopos, q)
}
ko := &Knockoff{
data: data,
kopos: kopos,
nvarSource: data.NumVar(),
bdat: make([][]float64, len(kopos)),
chunk: -1,
}
err := ko.init()
if err != nil {
return nil, err
}
return ko, nil
}
func (ko *Knockoff) init() error {
ko.getMoments()
ko.getCrossProd()
ko.getlmin()
err := ko.setrcmat()
if err != nil {
return err
}
ko.setNames()
return nil
}
// CrossProd returns the knockoff cross product matrix.
func (ko *Knockoff) CrossProd() []float64 {
return ko.cpr
}
// CrossProdMinEig returns the minimum eigenvalue of the knockoff cross product matrix.
func (ko *Knockoff) CrossProdMinEig() float64 {
return ko.lmin
}
// getMoments calculates the means and L2 norms of the knockoff
// variables.
func (ko *Knockoff) getMoments() {
p := len(ko.kopos)
// Get the means of the knockoff variables.
n := 0
ko.mean = make([]float64, p)
ko.data.Reset()
for ko.data.Next() {
for i, j := range ko.kopos {
x := ko.data.GetPos(j).([]float64)
ko.mean[i] += floats.Sum(x)
if i == 0 {
n += len(x)
}
}
}
for j := range ko.mean {
ko.mean[j] /= float64(n)
}
// Get the L2 norms of the knockoff variables
ko.scale = make([]float64, p)
ko.data.Reset()
for ko.data.Next() {
for i, j := range ko.kopos {
x := ko.data.GetPos(j).([]float64)
for k := range x {
u := x[k] - ko.mean[i]
ko.scale[i] += u * u
}
}
}
for j := range ko.scale {
ko.scale[j] = math.Sqrt(ko.scale[j])
}
// Check for errors
for j, s := range ko.scale {
if s == 0 || math.IsNaN(s) || math.IsInf(s, 0) {
msg := fmt.Sprintf("Variable '%s' has zero variance or Inf/NaN values.",
ko.data.Names()[ko.kopos[j]])
panic(msg)
}
}
}
// Get the cross product matrix, pooling over all chunks.
func (ko *Knockoff) getCrossProd() {
p := len(ko.kopos)
cpr := make([]float64, p*p)
ko.nobs = ko.nobs[0:0]
ko.data.Reset()
for ko.data.Next() {
// Get the variables for this chunk
var vax [][]float64
for _, j := range ko.kopos {
vax = append(vax, ko.data.GetPos(j).([]float64))
}
ko.nobs = append(ko.nobs, len(vax[0]))
ko.ntot += len(vax[0])
// Update the cross products of the knockoff variables
for j1 := 0; j1 < p; j1++ {
for j2 := 0; j2 <= j1; j2++ {
n := len(vax[0])
s := 0.0
for k := 0; k < n; k++ {
u1 := (vax[j1][k] - ko.mean[j1]) / ko.scale[j1]
u2 := (vax[j2][k] - ko.mean[j2]) / ko.scale[j2]
s += u1 * u2
}
cpr[j1*p+j2] += s
if j1 != j2 {
cpr[j2*p+j1] += s
}
}
}
}
// Check for errors
for _, v := range cpr {
if math.IsNaN(v) {
msg := "Cross product matrix has NaN values.\n"
panic(msg)
}
}
ko.cpr = cpr
}
// Get the minimum eigenvalue of the cross product matrix.
func (ko *Knockoff) getlmin() {
p := len(ko.kopos)
es := new(mat.EigenSym)
ok := es.Factorize(mat.NewSymDense(p, ko.cpr), false)
if !ok {
panic("Can't factorize the cross product matrix, it may not be PSD.\n")
}
va := es.Values(nil)
ko.lmin = floats.Min(va)
}
// Construct rmat and cmat. The knockoff features are X*rmat + U*cmat
// where X are the actual features and U are orthogonal to X.
func (ko *Knockoff) setrcmat() error {
p := len(ko.kopos)
// Inverse of the cross product matrix
ma := mat.NewDense(p, p, ko.cpr)
mi := mat.NewDense(p, p, nil)
err := mi.Inverse(ma)
if err != nil {
return fmt.Errorf("Can't invert cross product matrix")
}
f := 2 * ko.lmin
if f > 1 {
f = 1
}
ko.rmat = make([]float64, p*p)
for i := 0; i < p; i++ {
for j := 0; j < p; j++ {
ko.rmat[i*p+j] = -f * mi.At(i, j)
}
ko.rmat[i*p+i] += 1
}
// Barber and Candes equation 2.2
am := mat.NewSymDense(p, nil)
for i := 0; i < p; i++ {
for j := 0; j <= i; j++ {
am.SetSym(i, j, -f*f*mi.At(i, j))
}
am.SetSym(i, i, am.At(i, i)+2*f)
}
es := new(mat.EigenSym)
if !es.Factorize(am, true) {
return fmt.Errorf("EigenSym!\n")
}
lmat := new(mat.Dense)
es.VectorsTo(lmat)
va := es.Values(nil)
// Clip small negative eigenvalues
for j := range va {
if math.Abs(va[j]) < 1e-10 && va[j] < 0 {
va[j] = 0
}
}
if floats.Min(va) < 0 {
return fmt.Errorf("A matrix has negative eigenvalues\n")
}
ko.cmat = make([]float64, p*p)
for i := 0; i < p; i++ {
for j := 0; j < p; j++ {
ko.cmat[j*p+i] = lmat.At(i, j) * math.Sqrt(va[j])
}
}
for _, v := range ko.rmat {
if math.IsNaN(v) || math.IsInf(v, 0) {
return fmt.Errorf("R matrix has Inf or NaN values.\n")
}
}
for _, v := range ko.cmat {
if math.IsNaN(v) || math.IsInf(v, 0) {
return fmt.Errorf("C matrix has Inf or NaN values.\n")
}
}
return nil
}
// Names returns the variable names for the dstream.
func (ko *Knockoff) Names() []string {
return ko.names
}
// Reset returns the knockoff datastream to its beginning.
func (ko *Knockoff) Reset() {
ko.chunk = -1
ko.data.Reset()
}
func (ko *Knockoff) setNames() {
na := ko.data.Names()
var nak []string
for _, j := range ko.kopos {
nak = append(nak, na[j]+"_ko")
}
ko.names = append(ko.names, na...)
ko.names = append(ko.names, nak...)
varpos := make(map[string]int)
for k, v := range nak {
varpos[v] = k
}
ko.varpos = varpos
}
// GetPos returns the data for the jth variable in the dstream.
func (ko *Knockoff) GetPos(j int) interface{} {
p := ko.nvarSource
if j < p {
// An original variable
z := ko.data.GetPos(j).([]float64)
y := make([]float64, len(z))
copy(y, z)
// Standardize the variables that will be knocked off.
m := 0.0
s := 1.0
f := false
for i, k := range ko.kopos {
if j == k {
m = ko.mean[i]
s = ko.scale[i]
f = true
}
}
if f {
floats.AddConst(-m, y)
floats.Scale(1/s, y)
}
return y
}
// A knockoff variable
return ko.bdat[j-p]
}
// Get returns the data for the variable with the given name.
func (ko *Knockoff) Get(name string) interface{} {
pos, ok := ko.varpos[name]
if !ok {
msg := fmt.Sprintf("Variable '%s' not found\n", name)
panic(msg)
}
return ko.GetPos(pos)
}
// orthog returns an orthogonal matrix whose columns are orthogonal to
// the columns of ma.
func (ko *Knockoff) orthog(ma *mat.Dense) *mat.Dense {
n, p := ma.Dims()
if n < 2*(p-1)+1 {
panic("Knockoff requires n >= 2*p+1\n")
}
// Orthogonalize ma.
sv := new(mat.SVD)
if !sv.Factorize(ma, mat.SVDThin) {
panic("SVD!\n")
}
maq := new(mat.Dense)
sv.UTo(maq)
// Start with a matrix of random values
mr := mat.NewDense(n, p-1, nil)
for i := 0; i < n; i++ {
for j := 0; j < p-1; j++ {
mr.Set(i, j, rand.NormFloat64())
}
}
// Project away from col(ma) = col(maq)
qm := mat.NewDense(p, p-1, nil)
qm.Mul(maq.T(), mr)
fm := mat.NewDense(n, p-1, nil)
fm.Mul(maq, qm)
md := mat.NewDense(n, p-1, nil)
md.Sub(mr, fm)
// Orthogonalize
sv = new(mat.SVD)
if !sv.Factorize(md, mat.SVDThin) {
panic("SVD!\n")
}
u := new(mat.Dense)
sv.UTo(u)
f := math.Sqrt(float64(ko.nobs[ko.chunk]) / float64(ko.ntot))
u.Scale(f, u)
return u
}
// Next advances the dstream to the next chunk and returns true, or returns
// false if the dstream has been fully read.
func (ko *Knockoff) Next() bool {
ko.chunk++
if !ko.data.Next() {
return false
}
var vars [][]float64
for _, j := range ko.kopos {
vars = append(vars, ko.data.GetPos(j).([]float64))
}
// Put the source data into a contiguous array
n := len(vars[0])
p := len(vars)
xm := make([]float64, n*(p+1))
for i := 0; i < n; i++ {
for j := 0; j < p; j++ {
xm[i*(p+1)+j] = (vars[j][i] - ko.mean[j]) / ko.scale[j]
}
xm[i*(p+1)+p] = 1
}
xma := mat.NewDense(n, p+1, xm)
um := ko.orthog(xma)
for j := 0; j < p; j++ {
u := make([]float64, n)
for i := 0; i < n; i++ {
for k := 0; k < p; k++ {
a := (vars[k][i] - ko.mean[k]) / ko.scale[k]
u[i] += a * ko.rmat[k*p+j]
u[i] += um.At(i, k) * ko.cmat[k*p+j]
}
}
ko.bdat[j] = u
}
return true
}
// Close returns the underlying reader for the dstream.
func (ko *Knockoff) Close() {
ko.data.Close()
}
// NumObs returns the number of observations in the dstream.
func (ko *Knockoff) NumObs() int {
return ko.data.NumObs()
}
// NumVar returns the number of variables in the dstream.
func (ko *Knockoff) NumVar() int {
return len(ko.kopos) + ko.nvarSource
}
// KnockoffResult contains the results of fitting a regression model
// using the knockoff method.
type KnockoffResult struct {
// The names of the variables (one name for each
// actual/knockoff variable pair)
names []string
// The coefficicents for the actual variables
params []float64
// The knockoff statistics
wstat []float64
// Indicator that the Knockoff+ method was used for FDR calculation
plus bool
// The calculated FDR values
fdr []float64
}
// Names returns the names of the variables in the knockoff analysis.
// For each original/knockoff variable pair, only the original name is
// included.
func (kr *KnockoffResult) Names() []string {
return kr.names
}
// Params returns the estimated coefficients for the non-knockoff
// variables in the regression model.
func (kr *KnockoffResult) Params() []float64 {
return kr.params
}
// Stat returns the knockoff statistic values for the variables in the
// regression model. These statistics are obtained by comparing the
// coefficient for an actual variable to the coefficient for its
// knockoff counterpart, so one number is returned for each
// actual/knockoff pair of variables.
func (kr *KnockoffResult) Stat() []float64 {
return kr.wstat
}
// FDR returns the estimated false discovery rate values for the
// variables in the regression model.
func (kr *KnockoffResult) FDR() []float64 {
return kr.fdr
}
// NewKnockoffResult creates a knockoff result from a fitted regression
// model that has been fit to a Knockoff dataset.
func NewKnockoffResult(result BaseResultser, plus bool) *KnockoffResult {
names := result.Names()
params := result.Params()
// Map from variable name to position.
mp := make(map[string]int)
for k, v := range names {
mp[v] = k
}
// Get the names and statistics.
var pn []string
var wstat, rstat []float64
for k, v := range names {
if strings.HasSuffix(v, "_ko") {
continue
}
pos, ok := mp[v+"_ko"]
if !ok {
continue
}
pn = append(pn, v)
wstat = append(wstat, math.Abs(params[k])-math.Abs(params[pos]))
rstat = append(rstat, params[k])
}
// Sort by statistic value
ii := make([]int, len(pn))
floats.Argsort(wstat, ii)
var knames []string
var rstatx []float64
for _, i := range ii {
// Sort knames and rstat like wstat.
knames = append(knames, pn[i])
rstatx = append(rstatx, rstat[i])
}
// Get the FDR values
var fdr []float64
for k := range wstat {
denom := float64(len(wstat) - k)
numer := 0.0
for _, w := range wstat {
if w <= -wstat[k] {
numer++
}
}
if plus {
numer++
}
fdr = append(fdr, numer/denom)
}
return &KnockoffResult{
names: knames,
params: rstatx,
wstat: wstat,
plus: plus,
fdr: fdr,
}
}
|