1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211
|
/*
This example follows the leaf blotch analysis in McCullagh and
Nelder's GLM book.
The data are proportions between 0 and 1, arranged in a complete two-way
layout. The mean model is an additive factorial model. The
parameters are fit using a binomial GLM with the usual logit link
function. This is a quasi-likelihood analysis since the data are not
binary.
The first model fit below uses the default binomial variance function.
This produces a very small scale parameter estimate, and the
standardized residuals do not have constant variance relative to the
fitted mean.
The second model fit below uses a variance function that is the square
of the usual binomial variance function. This variance function gives
standardized residuals that are roughly constant with respect to the
mean, and the scale parameter estimate is close to 1.
Residual / mean plots are constructed to show how the specification
of the GLM variance function impacts the residual distribution.
The analysis follows the SAS manual:
https://support.sas.com/documentation/cdl/en/statug/63033/HTML/default/viewer.htm#statug_glimmix_sect016.htm
*/
package main
import (
"bytes"
"encoding/csv"
"fmt"
"io"
"strconv"
"github.com/kshedden/statmodel/glm"
"github.com/kshedden/statmodel/statmodel"
"gonum.org/v1/plot"
"gonum.org/v1/plot/plotter"
"gonum.org/v1/plot/plotutil"
"gonum.org/v1/plot/vg"
)
var (
raw string = `0.05,0.00,1.25,2.50,5.50,1.00,5.00,5.00,17.50
0.00,0.05,1.25,0.50,1.00,5.00,0.10,10.00,25.00
0.00,0.05,2.50,0.01,6.00,5.00,5.00,5.00,42.50
0.10,0.30,16.60,3.00,1.10,5.00,5.00,5.00,50.00
0.25,0.75,2.50,2.50,2.50,5.00,50.00,25.00,37.50
0.05,0.30,2.50,0.01,8.00,5.00,10.00,75.00,95.00
0.50,3.00,0.00,25.00,16.50,10.00,50.00,50.00,62.50
1.30,7.50,20.00,55.00,29.50,5.00,25.00,75.00,95.00
1.50,1.00,37.50,5.00,20.00,50.00,50.00,75.00,95.00
1.50,12.70,26.25,40.00,43.50,75.00,75.00,75.00,95.00`
// This is the square of the usual binomial variance function.
squaredbinom = &glm.Variance{
Name: "SquaredBinomial",
Var: func(mn, va []float64) {
for i := range mn {
va[i] = mn[i] * mn[i] * (1 - mn[i]) * (1 - mn[i])
}
},
Deriv: func(mn, va []float64) {
for i := range mn {
va[i] = 2*mn[i] - 6*mn[i]*mn[i] + 4*mn[i]*mn[i]*mn[i]
}
},
}
)
// setup builds a dataset from the raw data.
func setup() (statmodel.Dataset, []string) {
rdr := bytes.NewReader([]byte(raw))
rdc := csv.NewReader(rdr)
// There is one outcome variable, 10 row effects, and 9 column effects
nrow := 10
ncol := 9
// The outcome variable
var y []float64
// Row and column indicators
rowix := make([][]float64, nrow)
colix := make([][]float64, ncol)
for row := 0; ; row++ {
rec, err := rdc.Read()
if err == io.EOF {
break
} else if err != nil {
panic(err)
}
for col := range rec {
x, err := strconv.ParseFloat(rec[col], 64)
if err != nil {
panic(err)
}
// Convert percent to proportion
y = append(y, x/100)
// Row indicators
for j := 0; j < nrow; j++ {
if j == row {
rowix[j] = append(rowix[j], 1)
} else {
rowix[j] = append(rowix[j], 0)
}
}
// Column indicators
for j := 0; j < ncol; j++ {
if j == col {
colix[j] = append(colix[j], 1)
} else {
colix[j] = append(colix[j], 0)
}
}
}
}
da := [][]float64{y}
da = append(da, rowix...)
da = append(da, colix[0:ncol-1]...) // Omit the final column indicator
varnames := []string{"y"}
for j := 0; j < nrow; j++ {
vn := fmt.Sprintf("row%d", j)
varnames = append(varnames, vn)
}
for j := 0; j < ncol-1; j++ {
vn := fmt.Sprintf("col%d", j)
varnames = append(varnames, vn)
}
xnames := varnames[1:]
return statmodel.NewDataset(da, varnames), xnames
}
func residPlot(lp, resid []float64, title, filename string) {
p, err := plot.New()
if err != nil {
panic(err)
}
p.Title.Text = title
p.X.Label.Text = "Linear predictor"
p.Y.Label.Text = "Pearson residual"
pts := make(plotter.XYs, len(lp))
for i := range lp {
pts[i].X = lp[i]
pts[i].Y = resid[i]
}
err = plotutil.AddScatters(p, pts)
if err != nil {
panic(err)
}
err = p.Save(6*vg.Inch, 4*vg.Inch, filename)
if err != nil {
panic(err)
}
}
func main() {
data, xnames := setup()
// Initial model, the scale parameter estimate is around 0.09.
c := glm.DefaultConfig()
c.Family = glm.NewFamily(glm.BinomialFamily)
c.DispersionForm = glm.DispersionFree
model, err := glm.NewGLM(data, "y", xnames, c)
if err != nil {
panic(err)
}
result := model.Fit()
fmt.Printf("%v\n", result.Summary())
residPlot(result.LinearPredictor(nil), result.PearsonResid(nil),
"Default variance", "defvar.pdf")
fmt.Printf("%v\n", result.Summary())
// Model with squared variance function, the scale parameter estimate is close to 1.
c = glm.DefaultConfig()
c.Family = glm.NewFamily(glm.BinomialFamily)
c.DispersionForm = glm.DispersionFree
c.VarFunc = squaredbinom
model, err = glm.NewGLM(data, "y", xnames, c)
if err != nil {
panic(err)
}
result = model.Fit()
residPlot(result.LinearPredictor(nil), result.PearsonResid(nil),
"Squared variance", "sqvar.pdf")
fmt.Printf("%v\n", result.Summary())
}
|