File: irls.go

package info (click to toggle)
golang-github-kshedden-statmodel 0.0~git20210519.ee97d3e-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 892 kB
  • sloc: makefile: 3
file content (248 lines) | stat: -rw-r--r-- 4,722 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
package glm

import (
	"fmt"
	"math"
	"strings"
	"sync"

	"github.com/kshedden/statmodel/statmodel"
	"gonum.org/v1/gonum/mat"
)

func (glm *GLM) fitIRLS(start []float64, maxiter int) []float64 {

	// TODO make this configurable
	dtol := 1e-8

	linpred := glm.getNslice()
	mn := glm.getNslice()
	va := glm.getNslice()
	lderiv := glm.getNslice()
	irlsw := glm.getNslice()
	adjy := glm.getNslice()

	var nparam mat.VecDense

	nvar := glm.NumParams()

	xty := make([]float64, nvar)
	xtx := make([]float64, nvar*nvar)

	var params []float64
	if start == nil {
		params = make([]float64, nvar)
	} else {
		params = start
	}

	var dev []float64

	xdat := make([][]statmodel.Dtype, len(glm.xpos))
	for j, k := range glm.xpos {
		xdat[j] = glm.data[k]
	}

	// IRLS iterations
	for iter := 0; iter < maxiter; iter++ {

		zero(xtx)
		zero(xty)
		var devi float64

		// Loop over data chunks
		var wgt, off []statmodel.Dtype

		yda := glm.data[glm.ypos]

		if glm.weightpos != -1 {
			wgt = glm.data[glm.weightpos]
		}
		if glm.offsetpos != -1 {
			off = glm.data[glm.offsetpos]
		}

		zero(linpred)
		for j := range glm.xpos {
			for i := range linpred {
				linpred[i] += float64(xdat[j][i]) * params[j]
			}
		}

		if off != nil {
			for i := range linpred {
				linpred[i] += float64(off[i])
			}
		}

		if iter == 0 {
			glm.startingMu(yda, mn)
		} else {
			glm.link.InvLink(linpred, mn)
		}

		glm.link.Deriv(mn, lderiv)
		glm.vari.Var(mn, va)

		devi += glm.fam.Deviance(yda, mn, wgt, 1)

		// Create weights for WLS
		if wgt != nil {
			for i := range yda {
				irlsw[i] = float64(wgt[i]) / (lderiv[i] * lderiv[i] * va[i])
			}
		} else {
			for i := range yda {
				irlsw[i] = 1 / (lderiv[i] * lderiv[i] * va[i])
			}
		}

		// Create an adjusted response for WLS
		if off == nil {
			for i := range yda {
				adjy[i] = linpred[i] + lderiv[i]*(float64(yda[i])-mn[i])
			}
		} else {
			for i := range yda {
				adjy[i] = linpred[i] + lderiv[i]*(float64(yda[i])-mn[i]) - float64(off[i])
			}
		}

		// Update the weighted moment matrices.  For large data sets, this is by far the
		// most expensive step.
		glm.irlsXprod(xdat, adjy, irlsw, xty, xtx)

		// Fill in the unfilled triangle of xtx
		for j1 := range glm.xpos {
			for j2 := j1 + 1; j2 < nvar; j2++ {
				xtx[j1*nvar+j2] = xtx[j2*nvar+j1]
			}
		}

		// Update the parameters
		xtxm := mat.NewDense(nvar, nvar, xtx)
		xtyv := mat.NewVecDense(nvar, xty)
		err := nparam.SolveVec(xtxm, xtyv)
		if err != nil {
			for j := 0; j < nvar; j++ {
				fmt.Printf("%8d %12.4f %12.4f\n", j, xty[j], xtx[j*nvar+j])
			}
			panic(err)
		}
		params = nparam.RawVector().Data

		// Check convergence
		dev = append(dev, devi)
		if len(dev) > 3 && math.Abs(dev[len(dev)-1]-dev[len(dev)-2]) < dtol {
			break
		}

		if glm.log != nil {
			msg := fmt.Sprintf("Iteration %d: deviance=%.10f\n", iter+1, devi)
			glm.log.Print(msg)
		}
	}

	if glm.log != nil {
		glm.log.Print("IRLS converged\n")
	}

	glm.putNslice(linpred)
	glm.putNslice(mn)
	glm.putNslice(va)
	glm.putNslice(lderiv)
	glm.putNslice(irlsw)
	glm.putNslice(adjy)

	return params
}

func (glm *GLM) irlsXprod(xdat [][]statmodel.Dtype, adjy, irlsw, xty, xtx []float64) {

	if len(adjy) >= glm.concurrentIRLS {
		glm.irlsXprodConcurrent(xdat, adjy, irlsw, xty, xtx)
		return
	}

	nvar := len(xdat)

	for j1 := range glm.xpos {

		// Update x' w^-1 yadj
		xda := xdat[j1]
		var u float64
		for i := range adjy {
			u += adjy[i] * float64(xda[i]) * irlsw[i]
		}
		xty[j1] += u

		// Update x' w^-1 x
		for j2 := 0; j2 <= j1; j2++ {
			xdb := xdat[j2]
			var u float64
			for i := range xda {
				u += float64(xda[i]*xdb[i]) * irlsw[i]
			}
			xtx[j1*nvar+j2] += u
		}
	}
}

// irlsXprodConcurrent is a concurrent version of irlsXprod
func (glm *GLM) irlsXprodConcurrent(xdat [][]statmodel.Dtype, adjy, irlsw, xty, xtx []float64) {

	nvar := len(xdat)

	var wg sync.WaitGroup

	for j1 := range glm.xpos {

		// Update x' w^-1 yadj
		xda := xdat[j1]
		wg.Add(1)
		go func(j1 int) {
			var u float64
			for i := range adjy {
				u += adjy[i] * float64(xda[i]) * irlsw[i]
			}
			xty[j1] += u
			wg.Done()
		}(j1)

		// Update x' w^-1 x
		for j2 := 0; j2 <= j1; j2++ {
			xdb := xdat[j2]
			wg.Add(1)
			go func(j1, j2 int) {
				var u float64
				for i := range xda {
					u += float64(xda[i]*xdb[i]) * irlsw[i]
				}
				xtx[j1*nvar+j2] += u
				wg.Done()
			}(j1, j2)
		}
	}

	wg.Wait()
}

func (glm *GLM) startingMu(y []statmodel.Dtype, mn []float64) {

	var q float64
	name := strings.ToLower(glm.fam.Name)
	if name == "binomial" {
		q = 0.5
	} else {
		for i := range y {
			q += float64(y[i])
		}
		q /= float64(len(y))
	}
	for i := range mn {
		mn[i] = (float64(y[i]) + q) / 2
		if mn[i] < 0.1 {
			mn[i] = 0.1
		}
	}
}