File: profile.go

package info (click to toggle)
golang-github-kshedden-statmodel 0.0~git20210519.ee97d3e-2
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 892 kB
  • sloc: makefile: 3
file content (404 lines) | stat: -rw-r--r-- 9,611 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
package glm

import (
	"sort"

	"gonum.org/v1/gonum/optimize"
	"gonum.org/v1/gonum/stat/distuv"
)

// ScaleProfiler is used to do likelihood profile analysis on the scale
// parameter.  Set the Results field to a fitted GLMResults value.
// This is suitable for models with no additional parameters, if there
// are other parameters (e.g. in the Tweedie or Negative Binomial
// case), they are held fixed at their values from the provided fit.
type ScaleProfiler struct {

	// The profile analysis is done with respect to this fitted
	// model.
	results *GLMResults

	// After calling GetMLE, this will hold the MLE of the scale
	// parameter.
	scaleMLE float64

	// This is the largest log-likelihood value that can be
	// obtained by varying the scale parameter.
	maxLogLike float64

	// A sequence of (scale, log-likelihood) values that lie on
	// the profile curve.
	Profile [][2]float64

	// The parameters of the original fit.
	params []float64
}

// NewScaleProfiler returns a ScaleProfiler value that can be used to
// profile the scale parameters.
func NewScaleProfiler(result *GLMResults) *ScaleProfiler {

	ps := &ScaleProfiler{
		results: result,
	}

	pa := result.Params()
	params := make([]float64, len(pa))
	copy(params, pa)
	ps.params = params

	ps.getScaleMLE()

	return ps
}

type profPoint [][2]float64

func (a profPoint) Len() int           { return len(a) }
func (a profPoint) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
func (a profPoint) Less(i, j int) bool { return a[i][0] < a[j][1] }

// LogLike returns the profile log likelihood value at the given scale
// parameter value.
func (ps *ScaleProfiler) LogLike(scale float64) float64 {

	model := ps.results.Model().(*GLM)
	model.dispersionMethod = DispersionFixed

	model.dispersionValue = scale
	copy(model.start, ps.params)
	result := model.Fit()
	return result.LogLike()
}

func bisectmax(f func(float64) float64, x0, x1, x2, y1 float64) (float64, float64, [][2]float64) {

	var hist [][2]float64

	for x2-x0 > 1e-4 {
		if x2-x1 > x1-x0 {
			x := (x1 + x2) / 2
			y := f(x)
			hist = append(hist, [2]float64{x, y})
			if y > y1 {
				x0 = x1
				y1 = y
				x1 = x
			} else {
				x2 = x
			}
		} else {
			x := (x0 + x1) / 2
			y := f(x)
			hist = append(hist, [2]float64{x, y})
			if y > y1 {
				x2 = x1
				y1 = y
				x1 = x
			} else {
				x0 = x
			}
		}
	}

	return x1, y1, hist
}

func bisectroot(f func(float64) float64, x0, x1, y0, y1, yt float64) (float64, [][2]float64) {

	if (y0-yt)*(y1-yt) > 0 {
		panic("bisectroot invalid bracket")
	}

	var hist [][2]float64

	for x1-x0 > 1e-4 {
		x := (x0 + x1) / 2
		y := f(x)
		hist = append(hist, [2]float64{x, y})
		if (y-yt)*(y0-yt) > 0 {
			x0 = x
			y0 = y
		} else {
			x1 = x
		}
	}

	return (x0 + x1) / 2, hist
}

// ScaleMLE returns the maximum likelihood estimate of the scale parameter.
func (ps *ScaleProfiler) ScaleMLE() float64 {
	return ps.scaleMLE
}

func (ps *ScaleProfiler) getScaleMLE() {

	// Center point
	scale1 := ps.results.scale
	ll1 := ps.LogLike(scale1)

	// Upper point
	scale2 := 1.2 * scale1
	ll2 := ps.LogLike(scale2)
	for ll2 >= ll1 {
		scale2 *= 1.2
		ll2 = ps.LogLike(scale2)
	}

	// Lower point
	scale0 := 0.8 * scale1
	ll0 := ps.LogLike(scale0)
	for ll0 >= ll1 {
		scale0 *= 0.8
		ll0 = ps.LogLike(scale0)
	}

	var hist [][2]float64
	ps.scaleMLE, ps.maxLogLike, hist = bisectmax(ps.LogLike, scale0, scale1, scale2, ll1)
	ps.Profile = append(ps.Profile, hist...)

	sort.Sort(profPoint(ps.Profile))
}

// ConfInt identifies scale parameters scale1, scale2 that define a
// profile confidence interval for the scale parameter.  All points on
// the profile likelihood visited during the search are added to the
// Profile field of the ScaleProfiler value.
func (ps *ScaleProfiler) ConfInt(prob float64) (float64, float64) {

	qp := distuv.ChiSquared{K: 1}.Quantile(prob) / 2

	// Left side
	scale0 := 0.9 * ps.scaleMLE
	ll0 := ps.LogLike(scale0)
	for ll0 > ps.maxLogLike-qp {
		scale0 *= 0.9
		ll0 = ps.LogLike(scale0)
		ps.Profile = append(ps.Profile, [2]float64{scale0, ll0})
	}
	var hist [][2]float64
	scale0, hist = bisectroot(ps.LogLike, scale0, ps.scaleMLE, ll0, ps.maxLogLike, ps.maxLogLike-qp)
	ps.Profile = append(ps.Profile, hist...)

	// Right side
	scale1 := 1.1 * ps.scaleMLE
	ll1 := ps.LogLike(scale1)
	for ll1 > ps.maxLogLike-qp {
		scale1 *= 1.1
		ll1 = ps.LogLike(scale1)
		ps.Profile = append(ps.Profile, [2]float64{scale1, ll1})
	}
	scale1, hist = bisectroot(ps.LogLike, ps.scaleMLE, scale1, ps.maxLogLike, ll1, ps.maxLogLike-qp)
	ps.Profile = append(ps.Profile, hist...)

	sort.Sort(profPoint(ps.Profile))

	return scale0, scale1
}

// TweedieProfiler conducts profile likelihood analyses on a GLM with
// the Tweedie family.
type TweedieProfiler struct {

	// The profile analysis is done with respect to this fitted
	// model.
	results *GLMResults

	// The MLE of the scale parameter
	scaleMLE float64

	// The MLE of the variance power parameter
	varPowerMLE float64

	params []float64
}

// NewTweedieProfiler returns a TweedieProfiler that can be used to
// profile the variance power parameter of a Tweedie GLM.
func NewTweedieProfiler(result *GLMResults) *TweedieProfiler {

	tp := &TweedieProfiler{
		results: result,
	}

	pa := result.Params()
	tp.params = make([]float64, len(pa))
	copy(tp.params, pa)

	tp.getMLE()

	return tp
}

// ScaleMLE returns the maximum likelihood estimate of the scale parameter.
func (tp *TweedieProfiler) ScaleMLE() float64 {
	return tp.scaleMLE
}

// VarPowerMLE returns the maximum likelihood estimate of the variance power parameter..
func (tp *TweedieProfiler) VarPowerMLE() float64 {
	return tp.varPowerMLE
}

// LogLike returns the profile log likelihood value at the given
// variance power and scale parameter.
func (tp *TweedieProfiler) LogLike(pw, scale float64) float64 {

	model := tp.results.Model().(*GLM)
	model.dispersionMethod = DispersionFixed
	model.dispersionValue = scale

	model.fam = NewTweedieFamily(pw, model.link)
	copy(model.start, tp.params)
	result := model.Fit()

	return result.LogLike()
}

func (tp *TweedieProfiler) getMLE() {

	p := optimize.Problem{
		Func: func(x []float64) float64 {
			return -tp.LogLike(x[0], x[1])
		},
	}

	// Starting point for the search
	x0 := []float64{1.5, tp.results.scale}

	r, err := optimize.Minimize(p, x0, nil, &optimize.NelderMead{})
	if err != nil {
		panic(err)
	}

	tp.varPowerMLE = r.X[0]
	tp.scaleMLE = r.X[1]
}

// NegBinomProfiler conducts profile likelihood analyses on a GLM with
// the negative binomial family.
type NegBinomProfiler struct {

	// The profile analysis is done with respect to this fitted
	// model.
	results *GLMResults

	// The MLE of the dispersion parameter
	dispersionMLE float64

	// The maximum likelihood value at the MLE
	maxLogLike float64

	// A sequence of (dispersion, log-likelihood) values that lie on
	// the profile curve.
	Profile [][2]float64

	params []float64
}

// NewNegBinomProfiler returns a NegBinomProfiler that can be used to
// profile the dispersion parameter of a negative binomial GLM.
func NewNegBinomProfiler(result *GLMResults) *NegBinomProfiler {

	nb := &NegBinomProfiler{
		results: result,
	}

	pa := result.Params()
	nb.params = make([]float64, len(pa))
	copy(nb.params, pa)

	nb.getMLE()

	return nb
}

// LogLike returns the profile log likelihood value at the given
// dispersion parameter value.
func (nb *NegBinomProfiler) LogLike(disp float64) float64 {

	model := nb.results.Model().(*GLM)

	model.dispersionMethod = DispersionFixed
	model.dispersionValue = 1

	link := NewLink(LogLink)
	model.fam = NewNegBinomFamily(disp, link)
	copy(model.start, nb.params)
	result := model.Fit()

	return result.LogLike()
}

// DispersionMLE returns the maximum likelihood estimate of the dispersion parameter.
func (nb *NegBinomProfiler) DispersionMLE() float64 {
	return nb.dispersionMLE
}

func (nb *NegBinomProfiler) getMLE() {

	model := nb.results.Model().(*GLM)

	// Center point
	disp1 := model.fam.alpha
	ll1 := nb.LogLike(disp1)

	// Upper point
	disp2 := 1.2 * disp1
	ll2 := nb.LogLike(disp2)
	for ll2 >= ll1 {
		disp2 *= 1.2
		ll2 = nb.LogLike(disp2)
	}

	// Lower point
	disp0 := 0.8 * disp1
	ll0 := nb.LogLike(disp0)
	for ll0 >= ll1 {
		disp0 *= 0.8
		ll0 = nb.LogLike(disp0)
	}

	var hist [][2]float64
	nb.dispersionMLE, nb.maxLogLike, hist = bisectmax(nb.LogLike, disp0, disp1, disp2, ll1)
	nb.Profile = append(nb.Profile, hist...)

	sort.Sort(profPoint(nb.Profile))
}

// ConfInt identifies dispersion parameters disp1, disp2 that define a
// profile confidence interval for the dispersion parameter.  All
// points on the profile likelihood visited during the search are
// added to the Profile field of the NegBinomProfiler value.
func (nb *NegBinomProfiler) ConfInt(prob float64) (float64, float64) {

	qp := distuv.ChiSquared{K: 1}.Quantile(prob) / 2

	// Left side
	disp0 := 0.9 * nb.dispersionMLE
	ll0 := nb.LogLike(disp0)
	for ll0 > nb.maxLogLike-qp {
		disp0 *= 0.9
		ll0 = nb.LogLike(disp0)
		nb.Profile = append(nb.Profile, [2]float64{disp0, ll0})
	}
	var hist [][2]float64
	disp0, hist = bisectroot(nb.LogLike, disp0, nb.dispersionMLE, ll0, nb.maxLogLike, nb.maxLogLike-qp)
	nb.Profile = append(nb.Profile, hist...)

	// Right side
	disp1 := 1.1 * nb.dispersionMLE
	ll1 := nb.LogLike(disp1)
	for ll1 > nb.maxLogLike-qp {
		disp1 *= 1.1
		ll1 = nb.LogLike(disp1)
		nb.Profile = append(nb.Profile, [2]float64{disp1, ll1})
	}
	disp1, hist = bisectroot(nb.LogLike, nb.dispersionMLE, disp1, nb.maxLogLike, ll1, nb.maxLogLike-qp)
	nb.Profile = append(nb.Profile, hist...)

	sort.Sort(profPoint(nb.Profile))

	return disp0, disp1
}