1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
package glm
import (
"fmt"
"math"
)
// VarianceType is used to specify a GLM variance function.
type VarianceType uint8
// BinomialVar, ... define variance functions for a GLM.
const (
BinomialVar VarianceType = iota
IdentityVar
ConstantVar
SquaredVar
CubedVar
)
// NewVariance returns a new variance function object corresponding to
// the given name. Supported names are binomial, const, cubed,
// identity, and, squared.
func NewVariance(vartype VarianceType) *Variance {
switch vartype {
case BinomialVar:
return &binomVariance
case IdentityVar:
return &identVariance
case ConstantVar:
return &constVariance
case SquaredVar:
return &squaredVariance
case CubedVar:
return &cubedVariance
default:
msg := fmt.Sprintf("Unknown variance function: %d\n", vartype)
panic(msg)
}
}
// Variance represents a GLM variance function.
type Variance struct {
Name string
Var VecFunc
Deriv VecFunc
}
var binomVariance = Variance{
Name: "Binomial",
Var: binomVar,
Deriv: binomVarDeriv,
}
var identVariance = Variance{
Name: "Identity",
Var: identVar,
Deriv: identVarDeriv,
}
var constVariance = Variance{
Name: "Constant",
Var: constVar,
Deriv: constVarDeriv,
}
var squaredVariance = Variance{
Name: "Squared",
Var: squaredVar,
Deriv: squaredVarDeriv,
}
var cubedVariance = Variance{
Name: "Cubed",
Var: cubedVar,
Deriv: cubedVarDeriv,
}
func binomVar(mn []float64, v []float64) {
for i, p := range mn {
v[i] = p * (1 - p)
}
}
func binomVarDeriv(mn []float64, dv []float64) {
for i, p := range mn {
dv[i] = 1 - 2*p
}
}
func identVar(mn []float64, v []float64) {
copy(v, mn)
}
func identVarDeriv(mn []float64, v []float64) {
one(v)
}
func constVar(mn []float64, v []float64) {
one(v)
}
func constVarDeriv(mn []float64, v []float64) {
zero(v)
}
func squaredVar(mn []float64, v []float64) {
for i, m := range mn {
v[i] = m * m
}
}
func squaredVarDeriv(mn []float64, v []float64) {
for i, m := range mn {
v[i] = 2 * m
}
}
func cubedVar(mn []float64, v []float64) {
for i, m := range mn {
v[i] = m * m * m
}
}
func cubedVarDeriv(mn []float64, v []float64) {
for i, m := range mn {
v[i] = 3 * m * m
}
}
// NewNegBinomVariance returns a variance function for the negative
// binomial family, using the given parameter alpha to determine the
// mean/variance relationship. The variance for mean m is m +
// alpha*m^2.
func NewNegBinomVariance(alpha float64) *Variance {
vaf := func(mn []float64, v []float64) {
for i, m := range mn {
v[i] = m + alpha*m*m
}
}
vad := func(mn []float64, v []float64) {
for i, m := range mn {
v[i] = 1 + 2*alpha*m
}
}
return &Variance{
Var: vaf,
Deriv: vad,
}
}
// NewTweedieVariance returns a variance function for the Tweedie
// family, using the given parameter pw to determine the
// mean/variance relationship. The variance for mean m is m^pw.
func NewTweedieVariance(pw float64) *Variance {
vaf := func(mn []float64, v []float64) {
for i, m := range mn {
v[i] = math.Pow(m, pw)
}
}
vad := func(mn []float64, v []float64) {
for i, m := range mn {
v[i] = pw * math.Pow(m, pw-1)
}
}
return &Variance{
Var: vaf,
Deriv: vad,
}
}
|