File: rsa.go

package info (click to toggle)
golang-github-lestrrat-go-jwx 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,872 kB
  • sloc: sh: 222; makefile: 86; perl: 62
file content (283 lines) | stat: -rw-r--r-- 6,365 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
package jwk

import (
	"crypto"
	"crypto/rsa"
	"encoding/binary"
	"fmt"
	"math/big"

	"github.com/lestrrat-go/blackmagic"
	"github.com/lestrrat-go/jwx/v2/internal/base64"
	"github.com/lestrrat-go/jwx/v2/internal/pool"
)

func (k *rsaPrivateKey) FromRaw(rawKey *rsa.PrivateKey) error {
	k.mu.Lock()
	defer k.mu.Unlock()

	d, err := bigIntToBytes(rawKey.D)
	if err != nil {
		return fmt.Errorf(`invalid rsa.PrivateKey: %w`, err)
	}
	k.d = d

	l := len(rawKey.Primes)

	if l < 0 /* I know, I'm being paranoid */ || l > 2 {
		return fmt.Errorf(`invalid number of primes in rsa.PrivateKey: need 0 to 2, but got %d`, len(rawKey.Primes))
	}

	if l > 0 {
		p, err := bigIntToBytes(rawKey.Primes[0])
		if err != nil {
			return fmt.Errorf(`invalid rsa.PrivateKey: %w`, err)
		}
		k.p = p
	}

	if l > 1 {
		q, err := bigIntToBytes(rawKey.Primes[1])
		if err != nil {
			return fmt.Errorf(`invalid rsa.PrivateKey: %w`, err)
		}
		k.q = q
	}

	// dp, dq, qi are optional values
	if v, err := bigIntToBytes(rawKey.Precomputed.Dp); err == nil {
		k.dp = v
	}
	if v, err := bigIntToBytes(rawKey.Precomputed.Dq); err == nil {
		k.dq = v
	}
	if v, err := bigIntToBytes(rawKey.Precomputed.Qinv); err == nil {
		k.qi = v
	}

	// public key part
	n, e, err := rsaPublicKeyByteValuesFromRaw(&rawKey.PublicKey)
	if err != nil {
		return fmt.Errorf(`invalid rsa.PrivateKey: %w`, err)
	}
	k.n = n
	k.e = e

	return nil
}

func rsaPublicKeyByteValuesFromRaw(rawKey *rsa.PublicKey) ([]byte, []byte, error) {
	n, err := bigIntToBytes(rawKey.N)
	if err != nil {
		return nil, nil, fmt.Errorf(`invalid rsa.PublicKey: %w`, err)
	}

	data := make([]byte, 8)
	binary.BigEndian.PutUint64(data, uint64(rawKey.E))
	i := 0
	for ; i < len(data); i++ {
		if data[i] != 0x0 {
			break
		}
	}
	return n, data[i:], nil
}

func (k *rsaPublicKey) FromRaw(rawKey *rsa.PublicKey) error {
	k.mu.Lock()
	defer k.mu.Unlock()

	n, e, err := rsaPublicKeyByteValuesFromRaw(rawKey)
	if err != nil {
		return fmt.Errorf(`invalid rsa.PrivateKey: %w`, err)
	}
	k.n = n
	k.e = e

	return nil
}

func (k *rsaPrivateKey) Raw(v interface{}) error {
	k.mu.RLock()
	defer k.mu.RUnlock()

	var d, q, p big.Int // note: do not use from sync.Pool

	d.SetBytes(k.d)
	q.SetBytes(k.q)
	p.SetBytes(k.p)

	// optional fields
	var dp, dq, qi *big.Int
	if len(k.dp) > 0 {
		dp = &big.Int{} // note: do not use from sync.Pool
		dp.SetBytes(k.dp)
	}

	if len(k.dq) > 0 {
		dq = &big.Int{} // note: do not use from sync.Pool
		dq.SetBytes(k.dq)
	}

	if len(k.qi) > 0 {
		qi = &big.Int{} // note: do not use from sync.Pool
		qi.SetBytes(k.qi)
	}

	var key rsa.PrivateKey

	pubk := newRSAPublicKey()
	pubk.n = k.n
	pubk.e = k.e
	if err := pubk.Raw(&key.PublicKey); err != nil {
		return fmt.Errorf(`failed to materialize RSA public key: %w`, err)
	}

	key.D = &d
	key.Primes = []*big.Int{&p, &q}

	if dp != nil {
		key.Precomputed.Dp = dp
	}
	if dq != nil {
		key.Precomputed.Dq = dq
	}
	if qi != nil {
		key.Precomputed.Qinv = qi
	}
	key.Precomputed.CRTValues = []rsa.CRTValue{}

	return blackmagic.AssignIfCompatible(v, &key)
}

// Raw takes the values stored in the Key object, and creates the
// corresponding *rsa.PublicKey object.
func (k *rsaPublicKey) Raw(v interface{}) error {
	k.mu.RLock()
	defer k.mu.RUnlock()

	var key rsa.PublicKey

	n := pool.GetBigInt()
	e := pool.GetBigInt()
	defer pool.ReleaseBigInt(e)

	n.SetBytes(k.n)
	e.SetBytes(k.e)

	key.N = n
	key.E = int(e.Int64())

	return blackmagic.AssignIfCompatible(v, &key)
}

func makeRSAPublicKey(v interface {
	makePairs() []*HeaderPair
}) (Key, error) {
	newKey := newRSAPublicKey()

	// Iterate and copy everything except for the bits that should not be in the public key
	for _, pair := range v.makePairs() {
		switch pair.Key {
		case RSADKey, RSADPKey, RSADQKey, RSAPKey, RSAQKey, RSAQIKey:
			continue
		default:
			//nolint:forcetypeassert
			key := pair.Key.(string)
			if err := newKey.Set(key, pair.Value); err != nil {
				return nil, fmt.Errorf(`failed to set field %q: %w`, key, err)
			}
		}
	}

	return newKey, nil
}

func (k *rsaPrivateKey) PublicKey() (Key, error) {
	return makeRSAPublicKey(k)
}

func (k *rsaPublicKey) PublicKey() (Key, error) {
	return makeRSAPublicKey(k)
}

// Thumbprint returns the JWK thumbprint using the indicated
// hashing algorithm, according to RFC 7638
func (k rsaPrivateKey) Thumbprint(hash crypto.Hash) ([]byte, error) {
	k.mu.RLock()
	defer k.mu.RUnlock()

	var key rsa.PrivateKey
	if err := k.Raw(&key); err != nil {
		return nil, fmt.Errorf(`failed to materialize RSA private key: %w`, err)
	}
	return rsaThumbprint(hash, &key.PublicKey)
}

func (k rsaPublicKey) Thumbprint(hash crypto.Hash) ([]byte, error) {
	k.mu.RLock()
	defer k.mu.RUnlock()

	var key rsa.PublicKey
	if err := k.Raw(&key); err != nil {
		return nil, fmt.Errorf(`failed to materialize RSA public key: %w`, err)
	}
	return rsaThumbprint(hash, &key)
}

func rsaThumbprint(hash crypto.Hash, key *rsa.PublicKey) ([]byte, error) {
	buf := pool.GetBytesBuffer()
	defer pool.ReleaseBytesBuffer(buf)

	buf.WriteString(`{"e":"`)
	buf.WriteString(base64.EncodeUint64ToString(uint64(key.E)))
	buf.WriteString(`","kty":"RSA","n":"`)
	buf.WriteString(base64.EncodeToString(key.N.Bytes()))
	buf.WriteString(`"}`)

	h := hash.New()
	if _, err := buf.WriteTo(h); err != nil {
		return nil, fmt.Errorf(`failed to write rsaThumbprint: %w`, err)
	}
	return h.Sum(nil), nil
}

func validateRSAKey(key interface {
	N() []byte
	E() []byte
}, checkPrivate bool) error {
	if len(key.N()) == 0 {
		// Ideally we would like to check for the actual length, but unlike
		// EC keys, we have nothing in the key itself that will tell us
		// how many bits this key should have.
		return fmt.Errorf(`missing "n" value`)
	}
	if len(key.E()) == 0 {
		return fmt.Errorf(`missing "e" value`)
	}
	if checkPrivate {
		if priv, ok := key.(interface{ D() []byte }); ok {
			if len(priv.D()) == 0 {
				return fmt.Errorf(`missing "d" value`)
			}
		} else {
			return fmt.Errorf(`missing "d" value`)
		}
	}

	return nil
}

func (k *rsaPrivateKey) Validate() error {
	if err := validateRSAKey(k, true); err != nil {
		return NewKeyValidationError(fmt.Errorf(`jwk.RSAPrivateKey: %w`, err))
	}
	return nil
}

func (k *rsaPublicKey) Validate() error {
	if err := validateRSAKey(k, false); err != nil {
		return NewKeyValidationError(fmt.Errorf(`jwk.RSAPublicKey: %w`, err))
	}
	return nil
}