File: jws.go

package info (click to toggle)
golang-github-lestrrat-go-jwx 2.1.4-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,872 kB
  • sloc: sh: 222; makefile: 86; perl: 62
file content (903 lines) | stat: -rw-r--r-- 27,028 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
//go:generate ../tools/cmd/genjws.sh

// Package jws implements the digital signature on JSON based data
// structures as described in https://tools.ietf.org/html/rfc7515
//
// If you do not care about the details, the only things that you
// would need to use are the following functions:
//
//	jws.Sign(payload, jws.WithKey(algorithm, key))
//	jws.Verify(serialized, jws.WithKey(algorithm, key))
//
// To sign, simply use `jws.Sign`. `payload` is a []byte buffer that
// contains whatever data you want to sign. `alg` is one of the
// jwa.SignatureAlgorithm constants from package jwa. For RSA and
// ECDSA family of algorithms, you will need to prepare a private key.
// For HMAC family, you just need a []byte value. The `jws.Sign`
// function will return the encoded JWS message on success.
//
// To verify, use `jws.Verify`. It will parse the `encodedjws` buffer
// and verify the result using `algorithm` and `key`. Upon successful
// verification, the original payload is returned, so you can work on it.
package jws

import (
	"bufio"
	"bytes"
	"context"
	"crypto/ecdsa"
	"crypto/ed25519"
	"crypto/rsa"
	"errors"
	"fmt"
	"io"
	"reflect"
	"strings"
	"sync"
	"unicode"
	"unicode/utf8"

	"github.com/lestrrat-go/blackmagic"
	"github.com/lestrrat-go/jwx/v2/internal/base64"
	"github.com/lestrrat-go/jwx/v2/internal/json"
	"github.com/lestrrat-go/jwx/v2/internal/pool"
	"github.com/lestrrat-go/jwx/v2/jwa"
	"github.com/lestrrat-go/jwx/v2/jwk"
	"github.com/lestrrat-go/jwx/v2/x25519"
)

var registry = json.NewRegistry()

type payloadSigner struct {
	signer    Signer
	key       interface{}
	protected Headers
	public    Headers
}

func (s *payloadSigner) Sign(payload []byte) ([]byte, error) {
	return s.signer.Sign(payload, s.key)
}

func (s *payloadSigner) Algorithm() jwa.SignatureAlgorithm {
	return s.signer.Algorithm()
}

func (s *payloadSigner) ProtectedHeader() Headers {
	return s.protected
}

func (s *payloadSigner) PublicHeader() Headers {
	return s.public
}

var signers = make(map[jwa.SignatureAlgorithm]Signer)
var muSigner = &sync.Mutex{}

func removeSigner(alg jwa.SignatureAlgorithm) {
	muSigner.Lock()
	defer muSigner.Unlock()
	delete(signers, alg)
}

func makeSigner(alg jwa.SignatureAlgorithm, key interface{}, public, protected Headers) (*payloadSigner, error) {
	muSigner.Lock()
	signer, ok := signers[alg]
	if !ok {
		v, err := NewSigner(alg)
		if err != nil {
			muSigner.Unlock()
			return nil, fmt.Errorf(`failed to create payload signer: %w`, err)
		}
		signers[alg] = v
		signer = v
	}
	muSigner.Unlock()

	return &payloadSigner{
		signer:    signer,
		key:       key,
		public:    public,
		protected: protected,
	}, nil
}

const (
	fmtInvalid = 1 << iota
	fmtCompact
	fmtJSON
	fmtJSONPretty
	fmtMax
)

// silence linters
var _ = fmtInvalid
var _ = fmtMax

func validateKeyBeforeUse(key interface{}) error {
	jwkKey, ok := key.(jwk.Key)
	if !ok {
		converted, err := jwk.FromRaw(key)
		if err != nil {
			return fmt.Errorf(`could not convert key of type %T to jwk.Key for validation: %w`, key, err)
		}
		jwkKey = converted
	}
	return jwkKey.Validate()
}

// Sign generates a JWS message for the given payload and returns
// it in serialized form, which can be in either compact or
// JSON format. Default is compact.
//
// You must pass at least one key to `jws.Sign()` by using `jws.WithKey()`
// option.
//
//	jws.Sign(payload, jws.WithKey(alg, key))
//	jws.Sign(payload, jws.WithJSON(), jws.WithKey(alg1, key1), jws.WithKey(alg2, key2))
//
// Note that in the second example the `jws.WithJSON()` option is
// specified as well. This is because the compact serialization
// format does not support multiple signatures, and users must
// specifically ask for the JSON serialization format.
//
// Read the documentation for `jws.WithKey()` to learn more about the
// possible values that can be used for `alg` and `key`.
//
// You may create JWS messages with the "none" (jwa.NoSignature) algorithm
// if you use the `jws.WithInsecureNoSignature()` option. This option
// can be combined with one or more signature keys, as well as the
// `jws.WithJSON()` option to generate multiple signatures (though
// the usefulness of such constructs is highly debatable)
//
// Note that this library does not allow you to successfully call `jws.Verify()` on
// signatures with the "none" algorithm. To parse these, use `jws.Parse()` instead.
//
// If you want to use a detached payload, use `jws.WithDetachedPayload()` as
// one of the options. When you use this option, you must always set the
// first parameter (`payload`) to `nil`, or the function will return an error
//
// You may also want to look at how to pass protected headers to the
// signing process, as you will likely be required to set the `b64` field
// when using detached payload.
//
// Look for options that return `jws.SignOption` or `jws.SignVerifyOption`
// for a complete list of options that can be passed to this function.
func Sign(payload []byte, options ...SignOption) ([]byte, error) {
	format := fmtCompact
	var signers []*payloadSigner
	var detached bool
	var noneSignature *payloadSigner
	var validateKey bool
	for _, option := range options {
		//nolint:forcetypeassert
		switch option.Ident() {
		case identSerialization{}:
			format = option.Value().(int)
		case identInsecureNoSignature{}:
			data := option.Value().(*withInsecureNoSignature)
			// only the last one is used (we overwrite previous values)
			noneSignature = &payloadSigner{
				signer:    noneSigner{},
				protected: data.protected,
			}
		case identKey{}:
			data := option.Value().(*withKey)

			alg, ok := data.alg.(jwa.SignatureAlgorithm)
			if !ok {
				return nil, fmt.Errorf(`jws.Sign: expected algorithm to be of type jwa.SignatureAlgorithm but got (%[1]q, %[1]T)`, data.alg)
			}

			// No, we don't accept "none" here.
			if alg == jwa.NoSignature {
				return nil, fmt.Errorf(`jws.Sign: "none" (jwa.NoSignature) cannot be used with jws.WithKey`)
			}

			signer, err := makeSigner(alg, data.key, data.public, data.protected)
			if err != nil {
				return nil, fmt.Errorf(`jws.Sign: failed to create signer: %w`, err)
			}
			signers = append(signers, signer)
		case identDetachedPayload{}:
			detached = true
			if payload != nil {
				return nil, fmt.Errorf(`jws.Sign: payload must be nil when jws.WithDetachedPayload() is specified`)
			}
			payload = option.Value().([]byte)
		case identValidateKey{}:
			validateKey = option.Value().(bool)
		}
	}

	if noneSignature != nil {
		signers = append(signers, noneSignature)
	}

	lsigner := len(signers)
	if lsigner == 0 {
		return nil, fmt.Errorf(`jws.Sign: no signers available. Specify an alogirthm and akey using jws.WithKey()`)
	}

	// Design note: while we could have easily set format = fmtJSON when
	// lsigner > 1, I believe the decision to change serialization formats
	// must be explicitly stated by the caller. Otherwise, I'm pretty sure
	// there would be people filing issues saying "I get JSON when I expected
	// compact serialization".
	//
	// Therefore, instead of making implicit format conversions, we force the
	// user to spell it out as `jws.Sign(..., jws.WithJSON(), jws.WithKey(...), jws.WithKey(...))`
	if format == fmtCompact && lsigner != 1 {
		return nil, fmt.Errorf(`jws.Sign: cannot have multiple signers (keys) specified for compact serialization. Use only one jws.WithKey()`)
	}

	// Create a Message object with all the bits and bobs, and we'll
	// serialize it in the end
	var result Message

	result.payload = payload

	result.signatures = make([]*Signature, 0, len(signers))
	for i, signer := range signers {
		protected := signer.ProtectedHeader()
		if protected == nil {
			protected = NewHeaders()
		}

		if err := protected.Set(AlgorithmKey, signer.Algorithm()); err != nil {
			return nil, fmt.Errorf(`failed to set "alg" header: %w`, err)
		}

		if key, ok := signer.key.(jwk.Key); ok {
			if kid := key.KeyID(); kid != "" {
				if err := protected.Set(KeyIDKey, kid); err != nil {
					return nil, fmt.Errorf(`failed to set "kid" header: %w`, err)
				}
			}
		}
		sig := &Signature{
			headers:   signer.PublicHeader(),
			protected: protected,
			// cheat. FIXXXXXXMEEEEEE
			detached: detached,
		}

		if validateKey {
			if err := validateKeyBeforeUse(signer.key); err != nil {
				return nil, fmt.Errorf(`jws.Verify: %w`, err)
			}
		}
		_, _, err := sig.Sign(payload, signer.signer, signer.key)
		if err != nil {
			return nil, fmt.Errorf(`failed to generate signature for signer #%d (alg=%s): %w`, i, signer.Algorithm(), err)
		}

		result.signatures = append(result.signatures, sig)
	}

	switch format {
	case fmtJSON:
		return json.Marshal(result)
	case fmtJSONPretty:
		return json.MarshalIndent(result, "", "  ")
	case fmtCompact:
		// Take the only signature object, and convert it into a Compact
		// serialization format
		var compactOpts []CompactOption
		if detached {
			compactOpts = append(compactOpts, WithDetached(detached))
		}
		return Compact(&result, compactOpts...)
	default:
		return nil, fmt.Errorf(`jws.Sign: invalid serialization format`)
	}
}

var allowNoneWhitelist = jwk.WhitelistFunc(func(string) bool {
	return false
})

// Verify checks if the given JWS message is verifiable using `alg` and `key`.
// `key` may be a "raw" key (e.g. rsa.PublicKey) or a jwk.Key
//
// If the verification is successful, `err` is nil, and the content of the
// payload that was signed is returned. If you need more fine-grained
// control of the verification process, manually generate a
// `Verifier` in `verify` subpackage, and call `Verify` method on it.
// If you need to access signatures and JOSE headers in a JWS message,
// use `Parse` function to get `Message` object.
//
// Because the use of "none" (jwa.NoSignature) algorithm is strongly discouraged,
// this function DOES NOT consider it a success when `{"alg":"none"}` is
// encountered in the message (it would also be counterintuitive when the code says
// it _verified_ something when in fact it did no such thing). If you want to
// accept messages with "none" signature algorithm, use `jws.Parse` to get the
// raw JWS message.
func Verify(buf []byte, options ...VerifyOption) ([]byte, error) {
	var parseOptions []ParseOption
	var dst *Message
	var detachedPayload []byte
	var keyProviders []KeyProvider
	var keyUsed interface{}
	var validateKey bool

	ctx := context.Background()

	//nolint:forcetypeassert
	for _, option := range options {
		switch option.Ident() {
		case identMessage{}:
			dst = option.Value().(*Message)
		case identDetachedPayload{}:
			detachedPayload = option.Value().([]byte)
		case identKey{}:
			pair := option.Value().(*withKey)
			alg, ok := pair.alg.(jwa.SignatureAlgorithm)
			if !ok {
				return nil, fmt.Errorf(`WithKey() option must be specified using jwa.SignatureAlgorithm (got %T)`, pair.alg)
			}
			keyProviders = append(keyProviders, &staticKeyProvider{
				alg: alg,
				key: pair.key,
			})
		case identKeyProvider{}:
			keyProviders = append(keyProviders, option.Value().(KeyProvider))
		case identKeyUsed{}:
			keyUsed = option.Value()
		case identContext{}:
			//nolint:fatcontext
			ctx = option.Value().(context.Context)
		case identValidateKey{}:
			validateKey = option.Value().(bool)
		case identSerialization{}:
			parseOptions = append(parseOptions, option.(ParseOption))
		default:
			return nil, fmt.Errorf(`invalid jws.VerifyOption %q passed`, `With`+strings.TrimPrefix(fmt.Sprintf(`%T`, option.Ident()), `jws.ident`))
		}
	}

	if len(keyProviders) < 1 {
		return nil, fmt.Errorf(`jws.Verify: no key providers have been provided (see jws.WithKey(), jws.WithKeySet(), jws.WithVerifyAuto(), and jws.WithKeyProvider()`)
	}

	msg, err := Parse(buf, parseOptions...)
	if err != nil {
		return nil, fmt.Errorf(`failed to parse jws: %w`, err)
	}
	defer msg.clearRaw()

	if detachedPayload != nil {
		if len(msg.payload) != 0 {
			return nil, fmt.Errorf(`can't specify detached payload for JWS with payload`)
		}

		msg.payload = detachedPayload
	}

	// Pre-compute the base64 encoded version of payload
	var payload string
	if msg.b64 {
		payload = base64.EncodeToString(msg.payload)
	} else {
		payload = string(msg.payload)
	}

	verifyBuf := pool.GetBytesBuffer()
	defer pool.ReleaseBytesBuffer(verifyBuf)

	var errs []error
	for i, sig := range msg.signatures {
		verifyBuf.Reset()

		var encodedProtectedHeader string
		if rbp, ok := sig.protected.(interface{ rawBuffer() []byte }); ok {
			if raw := rbp.rawBuffer(); raw != nil {
				encodedProtectedHeader = base64.EncodeToString(raw)
			}
		}

		if encodedProtectedHeader == "" {
			protected, err := json.Marshal(sig.protected)
			if err != nil {
				return nil, fmt.Errorf(`failed to marshal "protected" for signature #%d: %w`, i+1, err)
			}

			encodedProtectedHeader = base64.EncodeToString(protected)
		}

		verifyBuf.WriteString(encodedProtectedHeader)
		verifyBuf.WriteByte('.')
		verifyBuf.WriteString(payload)

		for i, kp := range keyProviders {
			var sink algKeySink
			if err := kp.FetchKeys(ctx, &sink, sig, msg); err != nil {
				return nil, fmt.Errorf(`key provider %d failed: %w`, i, err)
			}

			for _, pair := range sink.list {
				// alg is converted here because pair.alg is of type jwa.KeyAlgorithm.
				// this may seem ugly, but we're trying to avoid declaring separate
				// structs for `alg jwa.KeyEncryptionAlgorithm` and `alg jwa.SignatureAlgorithm`
				//nolint:forcetypeassert
				alg := pair.alg.(jwa.SignatureAlgorithm)
				key := pair.key

				if validateKey {
					if err := validateKeyBeforeUse(key); err != nil {
						return nil, fmt.Errorf(`jws.Verify: %w`, err)
					}
				}
				verifier, err := NewVerifier(alg)
				if err != nil {
					return nil, fmt.Errorf(`failed to create verifier for algorithm %q: %w`, alg, err)
				}

				if err := verifier.Verify(verifyBuf.Bytes(), sig.signature, key); err != nil {
					errs = append(errs, err)
					continue
				}

				if keyUsed != nil {
					if err := blackmagic.AssignIfCompatible(keyUsed, key); err != nil {
						return nil, fmt.Errorf(`failed to assign used key (%T) to %T: %w`, key, keyUsed, err)
					}
				}

				if dst != nil {
					*(dst) = *msg
				}

				return msg.payload, nil
			}
		}
	}
	return nil, &verifyError{errs: errs}
}

type verifyError struct {
	// Note: when/if we can ditch Go < 1.20, we can change this to a simple
	// `err error`, where the value is the result of `errors.Join()`
	//
	// We also need to implement Unwrap:
	// func (e *verifyError) Unwrap() error {
	//	return e.err
	//}
	//
	// And finally, As() can go away
	errs []error
}

func (e *verifyError) Error() string {
	return `could not verify message using any of the signatures or keys`
}

func (e *verifyError) As(target interface{}) bool {
	for _, err := range e.errs {
		if errors.As(err, target) {
			return true
		}
	}
	return false
}

// IsVerificationError returns true if the error came from the verification part of the
// jws.Verify function, allowing you to check if the error is a result of actual
// verification failure.
//
// For example, if the error happened while fetching a key
// from a datasource, feeding that error should to this function return false, whereas
// a failure to compute the signature for whatever reason would be a verification error
// and returns true.
func IsVerificationError(err error) bool {
	var ve *verifyError
	return errors.As(err, &ve)
}

// get the value of b64 header field.
// If the field does not exist, returns true (default)
// Otherwise return the value specified by the header field.
func getB64Value(hdr Headers) bool {
	b64raw, ok := hdr.Get("b64")
	if !ok {
		return true // default
	}

	b64, ok := b64raw.(bool) // default
	if !ok {
		return false
	}
	return b64
}

// This is an "optimized" io.ReadAll(). It will attempt to read
// all of the contents from the reader IF the reader is of a certain
// concrete type.
func readAll(rdr io.Reader) ([]byte, bool) {
	switch rdr.(type) {
	case *bytes.Reader, *bytes.Buffer, *strings.Reader:
		data, err := io.ReadAll(rdr)
		if err != nil {
			return nil, false
		}
		return data, true
	default:
		return nil, false
	}
}

// Parse parses contents from the given source and creates a jws.Message
// struct. By default the input can be in either compact or full JSON serialization.
//
// You may pass `jws.WithJSON()` and/or `jws.WithCompact()` to specify
// explicitly which format to use. If neither or both is specified, the function
// will attempt to autodetect the format. If one or the other is specified,
// only the specified format will be attempted.
func Parse(src []byte, options ...ParseOption) (*Message, error) {
	var formats int
	for _, option := range options {
		//nolint:forcetypeassert
		switch option.Ident() {
		case identSerialization{}:
			switch option.Value().(int) {
			case fmtJSON:
				formats |= fmtJSON
			case fmtCompact:
				formats |= fmtCompact
			}
		}
	}

	// if format is 0 or both JSON/Compact, auto detect
	if v := formats & (fmtJSON | fmtCompact); v == 0 || v == fmtJSON|fmtCompact {
		for i := 0; i < len(src); i++ {
			r := rune(src[i])
			if r >= utf8.RuneSelf {
				r, _ = utf8.DecodeRune(src)
			}
			if !unicode.IsSpace(r) {
				if r == '{' {
					return parseJSON(src)
				}
				return parseCompact(src)
			}
		}
	} else if formats&fmtCompact == fmtCompact {
		return parseCompact(src)
	} else if formats&fmtJSON == fmtJSON {
		return parseJSON(src)
	}

	return nil, fmt.Errorf(`invalid byte sequence`)
}

// Parse parses contents from the given source and creates a jws.Message
// struct. The input can be in either compact or full JSON serialization.
func ParseString(src string) (*Message, error) {
	return Parse([]byte(src))
}

// Parse parses contents from the given source and creates a jws.Message
// struct. The input can be in either compact or full JSON serialization.
func ParseReader(src io.Reader) (*Message, error) {
	if data, ok := readAll(src); ok {
		return Parse(data)
	}

	rdr := bufio.NewReader(src)
	var first rune
	for {
		r, _, err := rdr.ReadRune()
		if err != nil {
			return nil, fmt.Errorf(`failed to read rune: %w`, err)
		}
		if !unicode.IsSpace(r) {
			first = r
			if err := rdr.UnreadRune(); err != nil {
				return nil, fmt.Errorf(`failed to unread rune: %w`, err)
			}

			break
		}
	}

	var parser func(io.Reader) (*Message, error)
	if first == '{' {
		parser = parseJSONReader
	} else {
		parser = parseCompactReader
	}

	m, err := parser(rdr)
	if err != nil {
		return nil, fmt.Errorf(`failed to parse jws message: %w`, err)
	}

	return m, nil
}

func parseJSONReader(src io.Reader) (result *Message, err error) {
	var m Message
	if err := json.NewDecoder(src).Decode(&m); err != nil {
		return nil, fmt.Errorf(`failed to unmarshal jws message: %w`, err)
	}
	return &m, nil
}

func parseJSON(data []byte) (result *Message, err error) {
	var m Message
	if err := json.Unmarshal(data, &m); err != nil {
		return nil, fmt.Errorf(`failed to unmarshal jws message: %w`, err)
	}
	return &m, nil
}

// SplitCompact splits a JWT and returns its three parts
// separately: protected headers, payload and signature.
func SplitCompact(src []byte) ([]byte, []byte, []byte, error) {
	parts := bytes.Split(src, []byte("."))
	if len(parts) < 3 {
		return nil, nil, nil, fmt.Errorf(`invalid number of segments`)
	}
	return parts[0], parts[1], parts[2], nil
}

// SplitCompactString splits a JWT and returns its three parts
// separately: protected headers, payload and signature.
func SplitCompactString(src string) ([]byte, []byte, []byte, error) {
	parts := strings.Split(src, ".")
	if len(parts) < 3 {
		return nil, nil, nil, fmt.Errorf(`invalid number of segments`)
	}
	return []byte(parts[0]), []byte(parts[1]), []byte(parts[2]), nil
}

// SplitCompactReader splits a JWT and returns its three parts
// separately: protected headers, payload and signature.
func SplitCompactReader(rdr io.Reader) ([]byte, []byte, []byte, error) {
	if data, ok := readAll(rdr); ok {
		return SplitCompact(data)
	}

	var protected []byte
	var payload []byte
	var signature []byte
	var periods int
	var state int

	buf := make([]byte, 4096)
	var sofar []byte

	for {
		// read next bytes
		n, err := rdr.Read(buf)
		// return on unexpected read error
		if err != nil && err != io.EOF {
			return nil, nil, nil, fmt.Errorf(`unexpected end of input: %w`, err)
		}

		// append to current buffer
		sofar = append(sofar, buf[:n]...)
		// loop to capture multiple '.' in current buffer
		for loop := true; loop; {
			var i = bytes.IndexByte(sofar, '.')
			if i == -1 && err != io.EOF {
				// no '.' found -> exit and read next bytes (outer loop)
				loop = false
				continue
			} else if i == -1 && err == io.EOF {
				// no '.' found -> process rest and exit
				i = len(sofar)
				loop = false
			} else {
				// '.' found
				periods++
			}

			// Reaching this point means we have found a '.' or EOF and process the rest of the buffer
			switch state {
			case 0:
				protected = sofar[:i]
				state++
			case 1:
				payload = sofar[:i]
				state++
			case 2:
				signature = sofar[:i]
			}
			// Shorten current buffer
			if len(sofar) > i {
				sofar = sofar[i+1:]
			}
		}
		// Exit on EOF
		if err == io.EOF {
			break
		}
	}
	if periods != 2 {
		return nil, nil, nil, fmt.Errorf(`invalid number of segments`)
	}

	return protected, payload, signature, nil
}

// parseCompactReader parses a JWS value serialized via compact serialization.
func parseCompactReader(rdr io.Reader) (m *Message, err error) {
	protected, payload, signature, err := SplitCompactReader(rdr)
	if err != nil {
		return nil, fmt.Errorf(`invalid compact serialization format: %w`, err)
	}
	return parse(protected, payload, signature)
}

func parseCompact(data []byte) (m *Message, err error) {
	protected, payload, signature, err := SplitCompact(data)
	if err != nil {
		return nil, fmt.Errorf(`invalid compact serialization format: %w`, err)
	}
	return parse(protected, payload, signature)
}

func parse(protected, payload, signature []byte) (*Message, error) {
	decodedHeader, err := base64.Decode(protected)
	if err != nil {
		return nil, fmt.Errorf(`failed to decode protected headers: %w`, err)
	}

	hdr := NewHeaders()
	if err := json.Unmarshal(decodedHeader, hdr); err != nil {
		return nil, fmt.Errorf(`failed to parse JOSE headers: %w`, err)
	}

	var decodedPayload []byte
	b64 := getB64Value(hdr)
	if !b64 {
		decodedPayload = payload
	} else {
		v, err := base64.Decode(payload)
		if err != nil {
			return nil, fmt.Errorf(`failed to decode payload: %w`, err)
		}
		decodedPayload = v
	}

	decodedSignature, err := base64.Decode(signature)
	if err != nil {
		return nil, fmt.Errorf(`failed to decode signature: %w`, err)
	}

	var msg Message
	msg.payload = decodedPayload
	msg.signatures = append(msg.signatures, &Signature{
		protected: hdr,
		signature: decodedSignature,
	})
	msg.b64 = b64
	return &msg, nil
}

// RegisterCustomField allows users to specify that a private field
// be decoded as an instance of the specified type. This option has
// a global effect.
//
// For example, suppose you have a custom field `x-birthday`, which
// you want to represent as a string formatted in RFC3339 in JSON,
// but want it back as `time.Time`.
//
// In that case you would register a custom field as follows
//
//	jwe.RegisterCustomField(`x-birthday`, timeT)
//
// Then `hdr.Get("x-birthday")` will still return an `interface{}`,
// but you can convert its type to `time.Time`
//
//	bdayif, _ := hdr.Get(`x-birthday`)
//	bday := bdayif.(time.Time)
func RegisterCustomField(name string, object interface{}) {
	registry.Register(name, object)
}

// Helpers for signature verification
var rawKeyToKeyType = make(map[reflect.Type]jwa.KeyType)
var keyTypeToAlgorithms = make(map[jwa.KeyType][]jwa.SignatureAlgorithm)

func init() {
	rawKeyToKeyType[reflect.TypeOf([]byte(nil))] = jwa.OctetSeq
	rawKeyToKeyType[reflect.TypeOf(ed25519.PublicKey(nil))] = jwa.OKP
	rawKeyToKeyType[reflect.TypeOf(rsa.PublicKey{})] = jwa.RSA
	rawKeyToKeyType[reflect.TypeOf((*rsa.PublicKey)(nil))] = jwa.RSA
	rawKeyToKeyType[reflect.TypeOf(ecdsa.PublicKey{})] = jwa.EC
	rawKeyToKeyType[reflect.TypeOf((*ecdsa.PublicKey)(nil))] = jwa.EC

	addAlgorithmForKeyType(jwa.OKP, jwa.EdDSA)
	for _, alg := range []jwa.SignatureAlgorithm{jwa.HS256, jwa.HS384, jwa.HS512} {
		addAlgorithmForKeyType(jwa.OctetSeq, alg)
	}
	for _, alg := range []jwa.SignatureAlgorithm{jwa.RS256, jwa.RS384, jwa.RS512, jwa.PS256, jwa.PS384, jwa.PS512} {
		addAlgorithmForKeyType(jwa.RSA, alg)
	}
	for _, alg := range []jwa.SignatureAlgorithm{jwa.ES256, jwa.ES384, jwa.ES512} {
		addAlgorithmForKeyType(jwa.EC, alg)
	}
}

func addAlgorithmForKeyType(kty jwa.KeyType, alg jwa.SignatureAlgorithm) {
	keyTypeToAlgorithms[kty] = append(keyTypeToAlgorithms[kty], alg)
}

// AlgorithmsForKey returns the possible signature algorithms that can
// be used for a given key. It only takes in consideration keys/algorithms
// for verification purposes, as this is the only usage where one may need
// dynamically figure out which method to use.
func AlgorithmsForKey(key interface{}) ([]jwa.SignatureAlgorithm, error) {
	var kty jwa.KeyType
	switch key := key.(type) {
	case jwk.Key:
		kty = key.KeyType()
	case rsa.PublicKey, *rsa.PublicKey, rsa.PrivateKey, *rsa.PrivateKey:
		kty = jwa.RSA
	case ecdsa.PublicKey, *ecdsa.PublicKey, ecdsa.PrivateKey, *ecdsa.PrivateKey:
		kty = jwa.EC
	case ed25519.PublicKey, ed25519.PrivateKey, x25519.PublicKey, x25519.PrivateKey:
		kty = jwa.OKP
	case []byte:
		kty = jwa.OctetSeq
	default:
		return nil, fmt.Errorf(`invalid key %T`, key)
	}

	algs, ok := keyTypeToAlgorithms[kty]
	if !ok {
		return nil, fmt.Errorf(`invalid key type %q`, kty)
	}
	return algs, nil
}

// Because the keys defined in github.com/lestrrat-go/jwx/jwk may also implement
// crypto.Signer, it would be possible for to mix up key types when signing/verifying
// for example, when we specify jws.WithKey(jwa.RSA256, cryptoSigner), the cryptoSigner
// can be for RSA, or any other type that implements crypto.Signer... even if it's for the
// wrong algorithm.
//
// These functions are there to differentiate between the valid KNOWN key types.
// For any other key type that is outside of the Go std library and our own code,
// we must rely on the user to be vigilant.
//
// Notes: symmetric keys are obviously not part of this. for v2 OKP keys,
// x25519 does not implement Sign()
func isValidRSAKey(key interface{}) bool {
	switch key.(type) {
	case
		ecdsa.PrivateKey, *ecdsa.PrivateKey,
		ed25519.PrivateKey,
		jwk.ECDSAPrivateKey, jwk.OKPPrivateKey:
		// these are NOT ok
		return false
	}
	return true
}

func isValidECDSAKey(key interface{}) bool {
	switch key.(type) {
	case
		ed25519.PrivateKey,
		rsa.PrivateKey, *rsa.PrivateKey,
		jwk.RSAPrivateKey, jwk.OKPPrivateKey:
		// these are NOT ok
		return false
	}
	return true
}

func isValidEDDSAKey(key interface{}) bool {
	switch key.(type) {
	case
		ecdsa.PrivateKey, *ecdsa.PrivateKey,
		rsa.PrivateKey, *rsa.PrivateKey,
		jwk.RSAPrivateKey, jwk.ECDSAPrivateKey:
		// these are NOT ok
		return false
	}
	return true
}