1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
package quic
import (
"errors"
"fmt"
"io"
"os"
"slices"
"strconv"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/internal/qerr"
"github.com/quic-go/quic-go/internal/wire"
)
const disableClientHelloScramblingEnv = "QUIC_GO_DISABLE_CLIENTHELLO_SCRAMBLING"
// The baseCryptoStream is used by the cryptoStream and the initialCryptoStream.
// This allows us to implement different logic for PopCryptoFrame for the two streams.
type baseCryptoStream struct {
queue frameSorter
highestOffset protocol.ByteCount
finished bool
writeOffset protocol.ByteCount
writeBuf []byte
}
func newCryptoStream() *cryptoStream {
return &cryptoStream{baseCryptoStream{queue: *newFrameSorter()}}
}
func (s *baseCryptoStream) HandleCryptoFrame(f *wire.CryptoFrame) error {
highestOffset := f.Offset + protocol.ByteCount(len(f.Data))
if maxOffset := highestOffset; maxOffset > protocol.MaxCryptoStreamOffset {
return &qerr.TransportError{
ErrorCode: qerr.CryptoBufferExceeded,
ErrorMessage: fmt.Sprintf("received invalid offset %d on crypto stream, maximum allowed %d", maxOffset, protocol.MaxCryptoStreamOffset),
}
}
if s.finished {
if highestOffset > s.highestOffset {
// reject crypto data received after this stream was already finished
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "received crypto data after change of encryption level",
}
}
// ignore data with a smaller offset than the highest received
// could e.g. be a retransmission
return nil
}
s.highestOffset = max(s.highestOffset, highestOffset)
return s.queue.Push(f.Data, f.Offset, nil)
}
// GetCryptoData retrieves data that was received in CRYPTO frames
func (s *baseCryptoStream) GetCryptoData() []byte {
_, data, _ := s.queue.Pop()
return data
}
func (s *baseCryptoStream) Finish() error {
if s.queue.HasMoreData() {
return &qerr.TransportError{
ErrorCode: qerr.ProtocolViolation,
ErrorMessage: "encryption level changed, but crypto stream has more data to read",
}
}
s.finished = true
return nil
}
// Writes writes data that should be sent out in CRYPTO frames
func (s *baseCryptoStream) Write(p []byte) (int, error) {
s.writeBuf = append(s.writeBuf, p...)
return len(p), nil
}
func (s *baseCryptoStream) HasData() bool {
return len(s.writeBuf) > 0
}
func (s *baseCryptoStream) PopCryptoFrame(maxLen protocol.ByteCount) *wire.CryptoFrame {
f := &wire.CryptoFrame{Offset: s.writeOffset}
n := min(f.MaxDataLen(maxLen), protocol.ByteCount(len(s.writeBuf)))
if n <= 0 {
return nil
}
f.Data = s.writeBuf[:n]
s.writeBuf = s.writeBuf[n:]
s.writeOffset += n
return f
}
type cryptoStream struct {
baseCryptoStream
}
type clientHelloCut struct {
start protocol.ByteCount
end protocol.ByteCount
}
type initialCryptoStream struct {
baseCryptoStream
scramble bool
end protocol.ByteCount
cuts [2]clientHelloCut
}
func newInitialCryptoStream(isClient bool) *initialCryptoStream {
var scramble bool
if isClient {
disabled, err := strconv.ParseBool(os.Getenv(disableClientHelloScramblingEnv))
scramble = err != nil || !disabled
}
s := &initialCryptoStream{
baseCryptoStream: baseCryptoStream{queue: *newFrameSorter()},
scramble: scramble,
}
for i := range len(s.cuts) {
s.cuts[i].start = protocol.InvalidByteCount
s.cuts[i].end = protocol.InvalidByteCount
}
return s
}
func (s *initialCryptoStream) HasData() bool {
// The ClientHello might be written in multiple parts.
// In order to correctly split the ClientHello, we need the entire ClientHello has been queued.
if s.scramble && s.writeOffset == 0 && s.cuts[0].start == protocol.InvalidByteCount {
return false
}
return s.baseCryptoStream.HasData()
}
func (s *initialCryptoStream) Write(p []byte) (int, error) {
s.writeBuf = append(s.writeBuf, p...)
if !s.scramble {
return len(p), nil
}
if s.cuts[0].start == protocol.InvalidByteCount {
sniPos, sniLen, echPos, err := findSNIAndECH(s.writeBuf)
if errors.Is(err, io.ErrUnexpectedEOF) {
return len(p), nil
}
if err != nil {
return len(p), err
}
if sniPos == -1 && echPos == -1 {
// Neither SNI nor ECH found.
// There's nothing to scramble.
s.scramble = false
return len(p), nil
}
s.end = protocol.ByteCount(len(s.writeBuf))
s.cuts[0].start = protocol.ByteCount(sniPos + sniLen/2) // right in the middle
s.cuts[0].end = protocol.ByteCount(sniPos + sniLen)
if echPos > 0 {
// ECH extension found, cut the ECH extension type value (a uint16) in half
start := protocol.ByteCount(echPos + 1)
s.cuts[1].start = start
// cut somewhere (16 bytes), most likely in the ECH extension value
s.cuts[1].end = min(start+16, s.end)
}
slices.SortFunc(s.cuts[:], func(a, b clientHelloCut) int {
if a.start == protocol.InvalidByteCount {
return 1
}
if a.start > b.start {
return 1
}
return -1
})
}
return len(p), nil
}
func (s *initialCryptoStream) PopCryptoFrame(maxLen protocol.ByteCount) *wire.CryptoFrame {
if !s.scramble {
return s.baseCryptoStream.PopCryptoFrame(maxLen)
}
// send out the skipped parts
if s.writeOffset == s.end {
var foundCuts bool
var f *wire.CryptoFrame
for i, c := range s.cuts {
if c.start == protocol.InvalidByteCount {
continue
}
foundCuts = true
if f != nil {
break
}
f = &wire.CryptoFrame{Offset: c.start}
n := min(f.MaxDataLen(maxLen), c.end-c.start)
if n <= 0 {
return nil
}
f.Data = s.writeBuf[c.start : c.start+n]
s.cuts[i].start += n
if s.cuts[i].start == c.end {
s.cuts[i].start = protocol.InvalidByteCount
s.cuts[i].end = protocol.InvalidByteCount
foundCuts = false
}
}
if !foundCuts {
// no more cuts found, we're done sending out everything up until s.end
s.writeBuf = s.writeBuf[s.end:]
s.end = protocol.InvalidByteCount
s.scramble = false
}
return f
}
nextCut := clientHelloCut{start: protocol.InvalidByteCount, end: protocol.InvalidByteCount}
for _, c := range s.cuts {
if c.start == protocol.InvalidByteCount {
continue
}
if c.start > s.writeOffset {
nextCut = c
break
}
}
f := &wire.CryptoFrame{Offset: s.writeOffset}
maxOffset := nextCut.start
if maxOffset == protocol.InvalidByteCount {
maxOffset = s.end
}
n := min(f.MaxDataLen(maxLen), maxOffset-s.writeOffset)
if n <= 0 {
return nil
}
f.Data = s.writeBuf[s.writeOffset : s.writeOffset+n]
// Don't reslice the writeBuf yet.
// This is done once all parts have been sent out.
s.writeOffset += n
if s.writeOffset == nextCut.start {
s.writeOffset = nextCut.end
}
return f
}
|