1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
package congestion
import (
"fmt"
"time"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/internal/utils"
"github.com/quic-go/quic-go/logging"
)
const (
// maxDatagramSize is the default maximum packet size used in the Linux TCP implementation.
// Used in QUIC for congestion window computations in bytes.
initialMaxDatagramSize = protocol.ByteCount(protocol.InitialPacketSize)
maxBurstPackets = 3
renoBeta = 0.7 // Reno backoff factor.
minCongestionWindowPackets = 2
initialCongestionWindow = 32
)
type cubicSender struct {
hybridSlowStart HybridSlowStart
rttStats *utils.RTTStats
cubic *Cubic
pacer *pacer
clock Clock
reno bool
// Track the largest packet that has been sent.
largestSentPacketNumber protocol.PacketNumber
// Track the largest packet that has been acked.
largestAckedPacketNumber protocol.PacketNumber
// Track the largest packet number outstanding when a CWND cutback occurs.
largestSentAtLastCutback protocol.PacketNumber
// Whether the last loss event caused us to exit slowstart.
// Used for stats collection of slowstartPacketsLost
lastCutbackExitedSlowstart bool
// Congestion window in bytes.
congestionWindow protocol.ByteCount
// Slow start congestion window in bytes, aka ssthresh.
slowStartThreshold protocol.ByteCount
// ACK counter for the Reno implementation.
numAckedPackets uint64
initialCongestionWindow protocol.ByteCount
initialMaxCongestionWindow protocol.ByteCount
maxDatagramSize protocol.ByteCount
lastState logging.CongestionState
tracer *logging.ConnectionTracer
}
var (
_ SendAlgorithm = &cubicSender{}
_ SendAlgorithmWithDebugInfos = &cubicSender{}
)
// NewCubicSender makes a new cubic sender
func NewCubicSender(
clock Clock,
rttStats *utils.RTTStats,
initialMaxDatagramSize protocol.ByteCount,
reno bool,
tracer *logging.ConnectionTracer,
) *cubicSender {
return newCubicSender(
clock,
rttStats,
reno,
initialMaxDatagramSize,
initialCongestionWindow*initialMaxDatagramSize,
protocol.MaxCongestionWindowPackets*initialMaxDatagramSize,
tracer,
)
}
func newCubicSender(
clock Clock,
rttStats *utils.RTTStats,
reno bool,
initialMaxDatagramSize,
initialCongestionWindow,
initialMaxCongestionWindow protocol.ByteCount,
tracer *logging.ConnectionTracer,
) *cubicSender {
c := &cubicSender{
rttStats: rttStats,
largestSentPacketNumber: protocol.InvalidPacketNumber,
largestAckedPacketNumber: protocol.InvalidPacketNumber,
largestSentAtLastCutback: protocol.InvalidPacketNumber,
initialCongestionWindow: initialCongestionWindow,
initialMaxCongestionWindow: initialMaxCongestionWindow,
congestionWindow: initialCongestionWindow,
slowStartThreshold: protocol.MaxByteCount,
cubic: NewCubic(clock),
clock: clock,
reno: reno,
tracer: tracer,
maxDatagramSize: initialMaxDatagramSize,
}
c.pacer = newPacer(c.BandwidthEstimate)
if c.tracer != nil && c.tracer.UpdatedCongestionState != nil {
c.lastState = logging.CongestionStateSlowStart
c.tracer.UpdatedCongestionState(logging.CongestionStateSlowStart)
}
return c
}
// TimeUntilSend returns when the next packet should be sent.
func (c *cubicSender) TimeUntilSend(_ protocol.ByteCount) time.Time {
return c.pacer.TimeUntilSend()
}
func (c *cubicSender) HasPacingBudget(now time.Time) bool {
return c.pacer.Budget(now) >= c.maxDatagramSize
}
func (c *cubicSender) maxCongestionWindow() protocol.ByteCount {
return c.maxDatagramSize * protocol.MaxCongestionWindowPackets
}
func (c *cubicSender) minCongestionWindow() protocol.ByteCount {
return c.maxDatagramSize * minCongestionWindowPackets
}
func (c *cubicSender) OnPacketSent(
sentTime time.Time,
_ protocol.ByteCount,
packetNumber protocol.PacketNumber,
bytes protocol.ByteCount,
isRetransmittable bool,
) {
c.pacer.SentPacket(sentTime, bytes)
if !isRetransmittable {
return
}
c.largestSentPacketNumber = packetNumber
c.hybridSlowStart.OnPacketSent(packetNumber)
}
func (c *cubicSender) CanSend(bytesInFlight protocol.ByteCount) bool {
return bytesInFlight < c.GetCongestionWindow()
}
func (c *cubicSender) InRecovery() bool {
return c.largestAckedPacketNumber != protocol.InvalidPacketNumber && c.largestAckedPacketNumber <= c.largestSentAtLastCutback
}
func (c *cubicSender) InSlowStart() bool {
return c.GetCongestionWindow() < c.slowStartThreshold
}
func (c *cubicSender) GetCongestionWindow() protocol.ByteCount {
return c.congestionWindow
}
func (c *cubicSender) MaybeExitSlowStart() {
if c.InSlowStart() &&
c.hybridSlowStart.ShouldExitSlowStart(c.rttStats.LatestRTT(), c.rttStats.MinRTT(), c.GetCongestionWindow()/c.maxDatagramSize) {
// exit slow start
c.slowStartThreshold = c.congestionWindow
c.maybeTraceStateChange(logging.CongestionStateCongestionAvoidance)
}
}
func (c *cubicSender) OnPacketAcked(
ackedPacketNumber protocol.PacketNumber,
ackedBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
eventTime time.Time,
) {
c.largestAckedPacketNumber = max(ackedPacketNumber, c.largestAckedPacketNumber)
if c.InRecovery() {
return
}
c.maybeIncreaseCwnd(ackedPacketNumber, ackedBytes, priorInFlight, eventTime)
if c.InSlowStart() {
c.hybridSlowStart.OnPacketAcked(ackedPacketNumber)
}
}
func (c *cubicSender) OnCongestionEvent(packetNumber protocol.PacketNumber, lostBytes, priorInFlight protocol.ByteCount) {
// TCP NewReno (RFC6582) says that once a loss occurs, any losses in packets
// already sent should be treated as a single loss event, since it's expected.
if packetNumber <= c.largestSentAtLastCutback {
return
}
c.lastCutbackExitedSlowstart = c.InSlowStart()
c.maybeTraceStateChange(logging.CongestionStateRecovery)
if c.reno {
c.congestionWindow = protocol.ByteCount(float64(c.congestionWindow) * renoBeta)
} else {
c.congestionWindow = c.cubic.CongestionWindowAfterPacketLoss(c.congestionWindow)
}
if minCwnd := c.minCongestionWindow(); c.congestionWindow < minCwnd {
c.congestionWindow = minCwnd
}
c.slowStartThreshold = c.congestionWindow
c.largestSentAtLastCutback = c.largestSentPacketNumber
// reset packet count from congestion avoidance mode. We start
// counting again when we're out of recovery.
c.numAckedPackets = 0
}
// Called when we receive an ack. Normal TCP tracks how many packets one ack
// represents, but quic has a separate ack for each packet.
func (c *cubicSender) maybeIncreaseCwnd(
_ protocol.PacketNumber,
ackedBytes protocol.ByteCount,
priorInFlight protocol.ByteCount,
eventTime time.Time,
) {
// Do not increase the congestion window unless the sender is close to using
// the current window.
if !c.isCwndLimited(priorInFlight) {
c.cubic.OnApplicationLimited()
c.maybeTraceStateChange(logging.CongestionStateApplicationLimited)
return
}
if c.congestionWindow >= c.maxCongestionWindow() {
return
}
if c.InSlowStart() {
// TCP slow start, exponential growth, increase by one for each ACK.
c.congestionWindow += c.maxDatagramSize
c.maybeTraceStateChange(logging.CongestionStateSlowStart)
return
}
// Congestion avoidance
c.maybeTraceStateChange(logging.CongestionStateCongestionAvoidance)
if c.reno {
// Classic Reno congestion avoidance.
c.numAckedPackets++
if c.numAckedPackets >= uint64(c.congestionWindow/c.maxDatagramSize) {
c.congestionWindow += c.maxDatagramSize
c.numAckedPackets = 0
}
} else {
c.congestionWindow = min(c.maxCongestionWindow(), c.cubic.CongestionWindowAfterAck(ackedBytes, c.congestionWindow, c.rttStats.MinRTT(), eventTime))
}
}
func (c *cubicSender) isCwndLimited(bytesInFlight protocol.ByteCount) bool {
congestionWindow := c.GetCongestionWindow()
if bytesInFlight >= congestionWindow {
return true
}
availableBytes := congestionWindow - bytesInFlight
slowStartLimited := c.InSlowStart() && bytesInFlight > congestionWindow/2
return slowStartLimited || availableBytes <= maxBurstPackets*c.maxDatagramSize
}
// BandwidthEstimate returns the current bandwidth estimate
func (c *cubicSender) BandwidthEstimate() Bandwidth {
srtt := c.rttStats.SmoothedRTT()
if srtt == 0 {
// If we haven't measured an rtt, the bandwidth estimate is unknown.
return infBandwidth
}
return BandwidthFromDelta(c.GetCongestionWindow(), srtt)
}
// OnRetransmissionTimeout is called on an retransmission timeout
func (c *cubicSender) OnRetransmissionTimeout(packetsRetransmitted bool) {
c.largestSentAtLastCutback = protocol.InvalidPacketNumber
if !packetsRetransmitted {
return
}
c.hybridSlowStart.Restart()
c.cubic.Reset()
c.slowStartThreshold = c.congestionWindow / 2
c.congestionWindow = c.minCongestionWindow()
}
// OnConnectionMigration is called when the connection is migrated (?)
func (c *cubicSender) OnConnectionMigration() {
c.hybridSlowStart.Restart()
c.largestSentPacketNumber = protocol.InvalidPacketNumber
c.largestAckedPacketNumber = protocol.InvalidPacketNumber
c.largestSentAtLastCutback = protocol.InvalidPacketNumber
c.lastCutbackExitedSlowstart = false
c.cubic.Reset()
c.numAckedPackets = 0
c.congestionWindow = c.initialCongestionWindow
c.slowStartThreshold = c.initialMaxCongestionWindow
}
func (c *cubicSender) maybeTraceStateChange(new logging.CongestionState) {
if c.tracer == nil || c.tracer.UpdatedCongestionState == nil || new == c.lastState {
return
}
c.tracer.UpdatedCongestionState(new)
c.lastState = new
}
func (c *cubicSender) SetMaxDatagramSize(s protocol.ByteCount) {
if s < c.maxDatagramSize {
panic(fmt.Sprintf("congestion BUG: decreased max datagram size from %d to %d", c.maxDatagramSize, s))
}
cwndIsMinCwnd := c.congestionWindow == c.minCongestionWindow()
c.maxDatagramSize = s
if cwndIsMinCwnd {
c.congestionWindow = c.minCongestionWindow()
}
c.pacer.SetMaxDatagramSize(s)
}
|