1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275
|
package wire
import (
"errors"
"math"
"sort"
"time"
"github.com/quic-go/quic-go/internal/protocol"
"github.com/quic-go/quic-go/quicvarint"
)
var errInvalidAckRanges = errors.New("AckFrame: ACK frame contains invalid ACK ranges")
// An AckFrame is an ACK frame
type AckFrame struct {
AckRanges []AckRange // has to be ordered. The highest ACK range goes first, the lowest ACK range goes last
DelayTime time.Duration
ECT0, ECT1, ECNCE uint64
}
// parseAckFrame reads an ACK frame
func parseAckFrame(frame *AckFrame, b []byte, typ FrameType, ackDelayExponent uint8, _ protocol.Version) (int, error) {
startLen := len(b)
ecn := typ == FrameTypeAckECN
la, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
largestAcked := protocol.PacketNumber(la)
delay, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
delayTime := time.Duration(delay*1<<ackDelayExponent) * time.Microsecond
if delayTime < 0 {
// If the delay time overflows, set it to the maximum encode-able value.
delayTime = time.Duration(math.MaxInt64)
}
frame.DelayTime = delayTime
numBlocks, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
// read the first ACK range
ab, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
ackBlock := protocol.PacketNumber(ab)
if ackBlock > largestAcked {
return 0, errors.New("invalid first ACK range")
}
smallest := largestAcked - ackBlock
frame.AckRanges = append(frame.AckRanges, AckRange{Smallest: smallest, Largest: largestAcked})
// read all the other ACK ranges
for i := uint64(0); i < numBlocks; i++ {
g, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
gap := protocol.PacketNumber(g)
if smallest < gap+2 {
return 0, errInvalidAckRanges
}
largest := smallest - gap - 2
ab, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
ackBlock := protocol.PacketNumber(ab)
if ackBlock > largest {
return 0, errInvalidAckRanges
}
smallest = largest - ackBlock
frame.AckRanges = append(frame.AckRanges, AckRange{Smallest: smallest, Largest: largest})
}
if !frame.validateAckRanges() {
return 0, errInvalidAckRanges
}
if ecn {
ect0, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
frame.ECT0 = ect0
ect1, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
frame.ECT1 = ect1
ecnce, l, err := quicvarint.Parse(b)
if err != nil {
return 0, replaceUnexpectedEOF(err)
}
b = b[l:]
frame.ECNCE = ecnce
}
return startLen - len(b), nil
}
// Append appends an ACK frame.
func (f *AckFrame) Append(b []byte, _ protocol.Version) ([]byte, error) {
hasECN := f.ECT0 > 0 || f.ECT1 > 0 || f.ECNCE > 0
if hasECN {
b = append(b, byte(FrameTypeAckECN))
} else {
b = append(b, byte(FrameTypeAck))
}
b = quicvarint.Append(b, uint64(f.LargestAcked()))
b = quicvarint.Append(b, encodeAckDelay(f.DelayTime))
numRanges := f.numEncodableAckRanges()
b = quicvarint.Append(b, uint64(numRanges-1))
// write the first range
_, firstRange := f.encodeAckRange(0)
b = quicvarint.Append(b, firstRange)
// write all the other range
for i := 1; i < numRanges; i++ {
gap, len := f.encodeAckRange(i)
b = quicvarint.Append(b, gap)
b = quicvarint.Append(b, len)
}
if hasECN {
b = quicvarint.Append(b, f.ECT0)
b = quicvarint.Append(b, f.ECT1)
b = quicvarint.Append(b, f.ECNCE)
}
return b, nil
}
// Length of a written frame
func (f *AckFrame) Length(_ protocol.Version) protocol.ByteCount {
largestAcked := f.AckRanges[0].Largest
numRanges := f.numEncodableAckRanges()
length := 1 + quicvarint.Len(uint64(largestAcked)) + quicvarint.Len(encodeAckDelay(f.DelayTime))
length += quicvarint.Len(uint64(numRanges - 1))
lowestInFirstRange := f.AckRanges[0].Smallest
length += quicvarint.Len(uint64(largestAcked - lowestInFirstRange))
for i := 1; i < numRanges; i++ {
gap, len := f.encodeAckRange(i)
length += quicvarint.Len(gap)
length += quicvarint.Len(len)
}
if f.ECT0 > 0 || f.ECT1 > 0 || f.ECNCE > 0 {
length += quicvarint.Len(f.ECT0)
length += quicvarint.Len(f.ECT1)
length += quicvarint.Len(f.ECNCE)
}
return protocol.ByteCount(length)
}
// gets the number of ACK ranges that can be encoded
// such that the resulting frame is smaller than the maximum ACK frame size
func (f *AckFrame) numEncodableAckRanges() int {
length := 1 + quicvarint.Len(uint64(f.LargestAcked())) + quicvarint.Len(encodeAckDelay(f.DelayTime))
length += 2 // assume that the number of ranges will consume 2 bytes
for i := 1; i < len(f.AckRanges); i++ {
gap, len := f.encodeAckRange(i)
rangeLen := quicvarint.Len(gap) + quicvarint.Len(len)
if protocol.ByteCount(length+rangeLen) > protocol.MaxAckFrameSize {
// Writing range i would exceed the MaxAckFrameSize.
// So encode one range less than that.
return i - 1
}
length += rangeLen
}
return len(f.AckRanges)
}
func (f *AckFrame) encodeAckRange(i int) (uint64 /* gap */, uint64 /* length */) {
if i == 0 {
return 0, uint64(f.AckRanges[0].Largest - f.AckRanges[0].Smallest)
}
return uint64(f.AckRanges[i-1].Smallest - f.AckRanges[i].Largest - 2),
uint64(f.AckRanges[i].Largest - f.AckRanges[i].Smallest)
}
// HasMissingRanges returns if this frame reports any missing packets
func (f *AckFrame) HasMissingRanges() bool {
return len(f.AckRanges) > 1
}
func (f *AckFrame) validateAckRanges() bool {
if len(f.AckRanges) == 0 {
return false
}
// check the validity of every single ACK range
for _, ackRange := range f.AckRanges {
if ackRange.Smallest > ackRange.Largest {
return false
}
}
// check the consistency for ACK with multiple NACK ranges
for i, ackRange := range f.AckRanges {
if i == 0 {
continue
}
lastAckRange := f.AckRanges[i-1]
if lastAckRange.Smallest <= ackRange.Smallest {
return false
}
if lastAckRange.Smallest <= ackRange.Largest+1 {
return false
}
}
return true
}
// LargestAcked is the largest acked packet number
func (f *AckFrame) LargestAcked() protocol.PacketNumber {
return f.AckRanges[0].Largest
}
// LowestAcked is the lowest acked packet number
func (f *AckFrame) LowestAcked() protocol.PacketNumber {
return f.AckRanges[len(f.AckRanges)-1].Smallest
}
// AcksPacket determines if this ACK frame acks a certain packet number
func (f *AckFrame) AcksPacket(p protocol.PacketNumber) bool {
if p < f.LowestAcked() || p > f.LargestAcked() {
return false
}
i := sort.Search(len(f.AckRanges), func(i int) bool {
return p >= f.AckRanges[i].Smallest
})
// i will always be < len(f.AckRanges), since we checked above that p is not bigger than the largest acked
return p <= f.AckRanges[i].Largest
}
func (f *AckFrame) Reset() {
f.DelayTime = 0
f.ECT0 = 0
f.ECT1 = 0
f.ECNCE = 0
for _, r := range f.AckRanges {
r.Largest = 0
r.Smallest = 0
}
f.AckRanges = f.AckRanges[:0]
}
func encodeAckDelay(delay time.Duration) uint64 {
return uint64(delay.Nanoseconds() / (1000 * (1 << protocol.AckDelayExponent)))
}
|