File: transport.go

package info (click to toggle)
golang-github-lucas-clemente-quic-go 0.54.0-1
  • links: PTS, VCS
  • area: main
  • in suites: sid
  • size: 4,312 kB
  • sloc: sh: 54; makefile: 7
file content (844 lines) | stat: -rw-r--r-- 25,933 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
package quic

import (
	"context"
	"crypto/rand"
	"crypto/tls"
	"errors"
	"fmt"
	"net"
	"sync"
	"sync/atomic"
	"time"

	"github.com/quic-go/quic-go/internal/protocol"
	"github.com/quic-go/quic-go/internal/utils"
	"github.com/quic-go/quic-go/internal/wire"
	"github.com/quic-go/quic-go/logging"
)

// ErrTransportClosed is returned by the [Transport]'s Listen or Dial method after it was closed.
var ErrTransportClosed = &errTransportClosed{}

type errTransportClosed struct {
	err error
}

func (e *errTransportClosed) Unwrap() []error { return []error{net.ErrClosed, e.err} }

func (e *errTransportClosed) Error() string {
	if e.err == nil {
		return "quic: transport closed"
	}
	return fmt.Sprintf("quic: transport closed: %s", e.err)
}

func (e *errTransportClosed) Is(target error) bool {
	_, ok := target.(*errTransportClosed)
	return ok
}

var errListenerAlreadySet = errors.New("listener already set")

type closePacket struct {
	payload []byte
	addr    net.Addr
	info    packetInfo
}

// The Transport is the central point to manage incoming and outgoing QUIC connections.
// QUIC demultiplexes connections based on their QUIC Connection IDs, not based on the 4-tuple.
// This means that a single UDP socket can be used for listening for incoming connections, as well as
// for dialing an arbitrary number of outgoing connections.
// A Transport handles a single net.PacketConn, and offers a range of configuration options
// compared to the simple helper functions like [Listen] and [Dial] that this package provides.
type Transport struct {
	// A single net.PacketConn can only be handled by one Transport.
	// Bad things will happen if passed to multiple Transports.
	//
	// A number of optimizations will be enabled if the connections implements the OOBCapablePacketConn interface,
	// as a *net.UDPConn does.
	// 1. It enables the Don't Fragment (DF) bit on the IP header.
	//    This is required to run DPLPMTUD (Path MTU Discovery, RFC 8899).
	// 2. It enables reading of the ECN bits from the IP header.
	//    This allows the remote node to speed up its loss detection and recovery.
	// 3. It uses batched syscalls (recvmmsg) to more efficiently receive packets from the socket.
	// 4. It uses Generic Segmentation Offload (GSO) to efficiently send batches of packets (on Linux).
	//
	// After passing the connection to the Transport, it's invalid to call ReadFrom or WriteTo on the connection.
	Conn net.PacketConn

	// The length of the connection ID in bytes.
	// It can be any value between 1 and 20.
	// Due to the increased risk of collisions, it is not recommended to use connection IDs shorter than 4 bytes.
	// If unset, a 4 byte connection ID will be used.
	ConnectionIDLength int

	// Use for generating new connection IDs.
	// This allows the application to control of the connection IDs used,
	// which allows routing / load balancing based on connection IDs.
	// All Connection IDs returned by the ConnectionIDGenerator MUST
	// have the same length.
	ConnectionIDGenerator ConnectionIDGenerator

	// The StatelessResetKey is used to generate stateless reset tokens.
	// If no key is configured, sending of stateless resets is disabled.
	// It is highly recommended to configure a stateless reset key, as stateless resets
	// allow the peer to quickly recover from crashes and reboots of this node.
	// See section 10.3 of RFC 9000 for details.
	StatelessResetKey *StatelessResetKey

	// The TokenGeneratorKey is used to encrypt session resumption tokens.
	// If no key is configured, a random key will be generated.
	// If multiple servers are authoritative for the same domain, they should use the same key,
	// see section 8.1.3 of RFC 9000 for details.
	TokenGeneratorKey *TokenGeneratorKey

	// MaxTokenAge is the maximum age of the resumption token presented during the handshake.
	// These tokens allow skipping address resumption when resuming a QUIC connection,
	// and are especially useful when using 0-RTT.
	// If not set, it defaults to 24 hours.
	// See section 8.1.3 of RFC 9000 for details.
	MaxTokenAge time.Duration

	// DisableVersionNegotiationPackets disables the sending of Version Negotiation packets.
	// This can be useful if version information is exchanged out-of-band.
	// It has no effect for clients.
	DisableVersionNegotiationPackets bool

	// VerifySourceAddress decides if a connection attempt originating from unvalidated source
	// addresses first needs to go through source address validation using QUIC's Retry mechanism,
	// as described in RFC 9000 section 8.1.2.
	// Note that the address passed to this callback is unvalidated, and might be spoofed in case
	// of an attack.
	// Validating the source address adds one additional network roundtrip to the handshake,
	// and should therefore only be used if a suspiciously high number of incoming connection is recorded.
	// For most use cases, wrapping the Allow function of a rate.Limiter will be a reasonable
	// implementation of this callback (negating its return value).
	VerifySourceAddress func(net.Addr) bool

	// ConnContext is called when the server accepts a new connection. To reject a connection return
	// a non-nil error.
	// The context is closed when the connection is closed, or when the handshake fails for any reason.
	// The context returned from the callback is used to derive every other context used during the
	// lifetime of the connection:
	// * the context passed to crypto/tls (and used on the tls.ClientHelloInfo)
	// * the context used in Config.Tracer
	// * the context returned from Conn.Context
	// * the context returned from SendStream.Context
	// It is not used for dialed connections.
	ConnContext func(context.Context, *ClientInfo) (context.Context, error)

	// A Tracer traces events that don't belong to a single QUIC connection.
	// Tracer.Close is called when the transport is closed.
	Tracer *logging.Tracer

	mutex       sync.Mutex
	handlers    map[protocol.ConnectionID]packetHandler
	resetTokens map[protocol.StatelessResetToken]packetHandler

	initOnce sync.Once
	initErr  error

	// If no ConnectionIDGenerator is set, this is the ConnectionIDLength.
	connIDLen int
	// Set in init.
	// If no ConnectionIDGenerator is set, this is set to a default.
	connIDGenerator   ConnectionIDGenerator
	statelessResetter *statelessResetter

	server *baseServer

	conn rawConn

	closeQueue          chan closePacket
	statelessResetQueue chan receivedPacket

	listening   chan struct{} // is closed when listen returns
	closeErr    error
	createdConn bool
	isSingleUse bool // was created for a single server or client, i.e. by calling quic.Listen or quic.Dial

	readingNonQUICPackets atomic.Bool
	nonQUICPackets        chan receivedPacket

	logger utils.Logger
}

// Listen starts listening for incoming QUIC connections.
// There can only be a single listener on any net.PacketConn.
// Listen may only be called again after the current listener was closed.
func (t *Transport) Listen(tlsConf *tls.Config, conf *Config) (*Listener, error) {
	s, err := t.createServer(tlsConf, conf, false)
	if err != nil {
		return nil, err
	}
	return &Listener{baseServer: s}, nil
}

// ListenEarly starts listening for incoming QUIC connections.
// There can only be a single listener on any net.PacketConn.
// ListenEarly may only be called again after the current listener was closed.
func (t *Transport) ListenEarly(tlsConf *tls.Config, conf *Config) (*EarlyListener, error) {
	s, err := t.createServer(tlsConf, conf, true)
	if err != nil {
		return nil, err
	}
	return &EarlyListener{baseServer: s}, nil
}

func (t *Transport) createServer(tlsConf *tls.Config, conf *Config, allow0RTT bool) (*baseServer, error) {
	if tlsConf == nil {
		return nil, errors.New("quic: tls.Config not set")
	}
	if err := validateConfig(conf); err != nil {
		return nil, err
	}

	t.mutex.Lock()
	defer t.mutex.Unlock()

	if t.closeErr != nil {
		return nil, t.closeErr
	}
	if t.server != nil {
		return nil, errListenerAlreadySet
	}
	conf = populateConfig(conf)
	if err := t.init(false); err != nil {
		return nil, err
	}
	maxTokenAge := t.MaxTokenAge
	if maxTokenAge == 0 {
		maxTokenAge = 24 * time.Hour
	}
	s := newServer(
		t.conn,
		(*packetHandlerMap)(t),
		t.connIDGenerator,
		t.statelessResetter,
		t.ConnContext,
		tlsConf,
		conf,
		t.Tracer,
		t.closeServer,
		*t.TokenGeneratorKey,
		maxTokenAge,
		t.VerifySourceAddress,
		t.DisableVersionNegotiationPackets,
		allow0RTT,
	)
	t.server = s
	return s, nil
}

// Dial dials a new connection to a remote host (not using 0-RTT).
func (t *Transport) Dial(ctx context.Context, addr net.Addr, tlsConf *tls.Config, conf *Config) (*Conn, error) {
	return t.dial(ctx, addr, "", tlsConf, conf, false)
}

// DialEarly dials a new connection, attempting to use 0-RTT if possible.
func (t *Transport) DialEarly(ctx context.Context, addr net.Addr, tlsConf *tls.Config, conf *Config) (*Conn, error) {
	return t.dial(ctx, addr, "", tlsConf, conf, true)
}

func (t *Transport) dial(ctx context.Context, addr net.Addr, host string, tlsConf *tls.Config, conf *Config, use0RTT bool) (*Conn, error) {
	if err := t.init(t.isSingleUse); err != nil {
		return nil, err
	}
	if err := validateConfig(conf); err != nil {
		return nil, err
	}
	conf = populateConfig(conf)
	tlsConf = tlsConf.Clone()
	setTLSConfigServerName(tlsConf, addr, host)
	return t.doDial(ctx,
		newSendConn(t.conn, addr, packetInfo{}, utils.DefaultLogger),
		tlsConf,
		conf,
		0,
		false,
		use0RTT,
		conf.Versions[0],
	)
}

func (t *Transport) doDial(
	ctx context.Context,
	sendConn sendConn,
	tlsConf *tls.Config,
	config *Config,
	initialPacketNumber protocol.PacketNumber,
	hasNegotiatedVersion bool,
	use0RTT bool,
	version protocol.Version,
) (*Conn, error) {
	srcConnID, err := t.connIDGenerator.GenerateConnectionID()
	if err != nil {
		return nil, err
	}
	destConnID, err := generateConnectionIDForInitial()
	if err != nil {
		return nil, err
	}

	tracingID := nextConnTracingID()
	ctx = context.WithValue(ctx, ConnectionTracingKey, tracingID)

	t.mutex.Lock()
	if t.closeErr != nil {
		t.mutex.Unlock()
		return nil, t.closeErr
	}

	var tracer *logging.ConnectionTracer
	if config.Tracer != nil {
		tracer = config.Tracer(ctx, protocol.PerspectiveClient, destConnID)
	}
	if tracer != nil && tracer.StartedConnection != nil {
		tracer.StartedConnection(sendConn.LocalAddr(), sendConn.RemoteAddr(), srcConnID, destConnID)
	}

	logger := utils.DefaultLogger.WithPrefix("client")
	logger.Infof("Starting new connection to %s (%s -> %s), source connection ID %s, destination connection ID %s, version %s", tlsConf.ServerName, sendConn.LocalAddr(), sendConn.RemoteAddr(), srcConnID, destConnID, version)

	conn := newClientConnection(
		context.WithoutCancel(ctx),
		sendConn,
		(*packetHandlerMap)(t),
		destConnID,
		srcConnID,
		t.connIDGenerator,
		t.statelessResetter,
		config,
		tlsConf,
		initialPacketNumber,
		use0RTT,
		hasNegotiatedVersion,
		tracer,
		logger,
		version,
	)
	t.handlers[srcConnID] = conn
	t.mutex.Unlock()

	// The error channel needs to be buffered, as the run loop will continue running
	// after doDial returns (if the handshake is successful).
	// Similarly, the recreateChan needs to be buffered; in case a different case is selected.
	errChan := make(chan error, 1)
	recreateChan := make(chan errCloseForRecreating, 1)
	go func() {
		err := conn.run()
		var recreateErr *errCloseForRecreating
		if errors.As(err, &recreateErr) {
			recreateChan <- *recreateErr
			return
		}
		if t.isSingleUse {
			t.Close()
		}
		errChan <- err
	}()

	// Only set when we're using 0-RTT.
	// Otherwise, earlyConnChan will be nil. Receiving from a nil chan blocks forever.
	var earlyConnChan <-chan struct{}
	if use0RTT {
		earlyConnChan = conn.earlyConnReady()
	}

	select {
	case <-ctx.Done():
		conn.destroy(nil)
		// wait until the Go routine that called Conn.run() returns
		select {
		case <-errChan:
		case <-recreateChan:
		}
		return nil, context.Cause(ctx)
	case params := <-recreateChan:
		return t.doDial(ctx,
			sendConn,
			tlsConf,
			config,
			params.nextPacketNumber,
			true,
			use0RTT,
			params.nextVersion,
		)
	case err := <-errChan:
		return nil, err
	case <-earlyConnChan:
		// ready to send 0-RTT data
		return conn.Conn, nil
	case <-conn.HandshakeComplete():
		// handshake successfully completed
		return conn.Conn, nil
	}
}

func (t *Transport) init(allowZeroLengthConnIDs bool) error {
	t.initOnce.Do(func() {
		var conn rawConn
		if c, ok := t.Conn.(rawConn); ok {
			conn = c
		} else {
			var err error
			conn, err = wrapConn(t.Conn)
			if err != nil {
				t.initErr = err
				return
			}
		}

		t.logger = utils.DefaultLogger // TODO: make this configurable
		t.conn = conn
		t.handlers = make(map[protocol.ConnectionID]packetHandler)
		t.resetTokens = make(map[protocol.StatelessResetToken]packetHandler)
		t.listening = make(chan struct{})

		t.closeQueue = make(chan closePacket, 4)
		t.statelessResetQueue = make(chan receivedPacket, 4)
		if t.TokenGeneratorKey == nil {
			var key TokenGeneratorKey
			if _, err := rand.Read(key[:]); err != nil {
				t.initErr = err
				return
			}
			t.TokenGeneratorKey = &key
		}

		if t.ConnectionIDGenerator != nil {
			t.connIDGenerator = t.ConnectionIDGenerator
			t.connIDLen = t.ConnectionIDGenerator.ConnectionIDLen()
		} else {
			connIDLen := t.ConnectionIDLength
			if t.ConnectionIDLength == 0 && !allowZeroLengthConnIDs {
				connIDLen = protocol.DefaultConnectionIDLength
			}
			t.connIDLen = connIDLen
			t.connIDGenerator = &protocol.DefaultConnectionIDGenerator{ConnLen: t.connIDLen}
		}
		t.statelessResetter = newStatelessResetter(t.StatelessResetKey)

		go func() {
			defer close(t.listening)
			t.listen(conn)

			if t.createdConn {
				conn.Close()
			}
		}()
		go t.runSendQueue()
	})
	return t.initErr
}

// WriteTo sends a packet on the underlying connection.
func (t *Transport) WriteTo(b []byte, addr net.Addr) (int, error) {
	if err := t.init(false); err != nil {
		return 0, err
	}
	return t.conn.WritePacket(b, addr, nil, 0, protocol.ECNUnsupported)
}

func (t *Transport) runSendQueue() {
	for {
		select {
		case <-t.listening:
			return
		case p := <-t.closeQueue:
			t.conn.WritePacket(p.payload, p.addr, p.info.OOB(), 0, protocol.ECNUnsupported)
		case p := <-t.statelessResetQueue:
			t.sendStatelessReset(p)
		}
	}
}

// Close stops listening for UDP datagrams on the Transport.Conn.
// It abruptly terminates all existing connections, without sending a CONNECTION_CLOSE
// to the peers. It is the application's responsibility to cleanly terminate existing
// connections prior to calling Close.
//
// If a server was started, it will be closed as well.
// It is not possible to start any new server or dial new connections after that.
func (t *Transport) Close() error {
	// avoid race condition if the transport is currently being initialized
	t.init(false)

	t.close(nil)
	if t.createdConn {
		if err := t.Conn.Close(); err != nil {
			return err
		}
	} else if t.conn != nil {
		t.conn.SetReadDeadline(time.Now())
		defer func() { t.conn.SetReadDeadline(time.Time{}) }()
	}
	if t.listening != nil {
		<-t.listening // wait until listening returns
	}
	return nil
}

func (t *Transport) closeServer() {
	t.mutex.Lock()
	defer t.mutex.Unlock()

	t.server = nil
	if t.isSingleUse {
		t.closeErr = ErrServerClosed
	}

	if len(t.handlers) == 0 {
		t.maybeStopListening()
	}
}

func (t *Transport) close(e error) {
	t.mutex.Lock()

	if t.closeErr != nil {
		t.mutex.Unlock()
		return
	}

	e = &errTransportClosed{err: e}
	t.closeErr = e
	server := t.server
	t.server = nil
	if server != nil {
		t.mutex.Unlock()
		server.close(e, true)
		t.mutex.Lock()
	}

	// Close existing connections
	var wg sync.WaitGroup
	for _, handler := range t.handlers {
		wg.Add(1)
		go func(handler packetHandler) {
			handler.destroy(e)
			wg.Done()
		}(handler)
	}
	t.mutex.Unlock() // closing connections requires releasing transport mutex
	wg.Wait()

	if t.Tracer != nil && t.Tracer.Close != nil {
		t.Tracer.Close()
	}
}

// only print warnings about the UDP receive buffer size once
var setBufferWarningOnce sync.Once

func (t *Transport) listen(conn rawConn) {
	for {
		p, err := conn.ReadPacket()
		//nolint:staticcheck // SA1019 ignore this!
		// TODO: This code is used to ignore wsa errors on Windows.
		// Since net.Error.Temporary is deprecated as of Go 1.18, we should find a better solution.
		// See https://github.com/quic-go/quic-go/issues/1737 for details.
		if nerr, ok := err.(net.Error); ok && nerr.Temporary() {
			t.mutex.Lock()
			closed := t.closeErr != nil
			t.mutex.Unlock()
			if closed {
				return
			}
			t.logger.Debugf("Temporary error reading from conn: %w", err)
			continue
		}
		if err != nil {
			// Windows returns an error when receiving a UDP datagram that doesn't fit into the provided buffer.
			if isRecvMsgSizeErr(err) {
				continue
			}
			t.close(err)
			return
		}
		t.handlePacket(p)
	}
}

func (t *Transport) maybeStopListening() {
	if t.isSingleUse && t.closeErr != nil {
		t.conn.SetReadDeadline(time.Now())
	}
}

func (t *Transport) handlePacket(p receivedPacket) {
	if len(p.data) == 0 {
		return
	}
	if !wire.IsPotentialQUICPacket(p.data[0]) && !wire.IsLongHeaderPacket(p.data[0]) {
		t.handleNonQUICPacket(p)
		return
	}
	connID, err := wire.ParseConnectionID(p.data, t.connIDLen)
	if err != nil {
		t.logger.Debugf("error parsing connection ID on packet from %s: %s", p.remoteAddr, err)
		if t.Tracer != nil && t.Tracer.DroppedPacket != nil {
			t.Tracer.DroppedPacket(p.remoteAddr, logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropHeaderParseError)
		}
		p.buffer.MaybeRelease()
		return
	}

	// If there's a connection associated with the connection ID, pass the packet there.
	if handler, ok := (*packetHandlerMap)(t).Get(connID); ok {
		handler.handlePacket(p)
		return
	}
	// RFC 9000 section 10.3.1 requires that the stateless reset detection logic is run for both
	// packets that cannot be associated with any connections, and for packets that can't be decrypted.
	// We deviate from the RFC and ignore the latter: If a packet's connection ID is associated with an
	// existing connection, it is dropped there if if it can't be decrypted.
	// Stateless resets use random connection IDs, and at reasonable connection ID lengths collisions are
	// exceedingly rare. In the unlikely event that a stateless reset is misrouted to an existing connection,
	// it is to be expected that the next stateless reset will be correctly detected.
	if isStatelessReset := t.maybeHandleStatelessReset(p.data); isStatelessReset {
		return
	}
	if !wire.IsLongHeaderPacket(p.data[0]) {
		if statelessResetQueued := t.maybeSendStatelessReset(p); !statelessResetQueued {
			if t.Tracer != nil && t.Tracer.DroppedPacket != nil {
				t.Tracer.DroppedPacket(p.remoteAddr, logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropUnknownConnectionID)
			}
			p.buffer.Release()
		}
		return
	}

	t.mutex.Lock()
	defer t.mutex.Unlock()
	if t.server == nil { // no server set
		t.logger.Debugf("received a packet with an unexpected connection ID %s", connID)
		if t.Tracer != nil && t.Tracer.DroppedPacket != nil {
			t.Tracer.DroppedPacket(p.remoteAddr, logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropUnknownConnectionID)
		}
		p.buffer.MaybeRelease()
		return
	}
	t.server.handlePacket(p)
}

func (t *Transport) maybeSendStatelessReset(p receivedPacket) (statelessResetQueued bool) {
	if t.StatelessResetKey == nil {
		return false
	}

	// Don't send a stateless reset in response to very small packets.
	// This includes packets that could be stateless resets.
	if len(p.data) <= protocol.MinStatelessResetSize {
		return false
	}

	select {
	case t.statelessResetQueue <- p:
		return true
	default:
		// it's fine to not send a stateless reset when we're busy
		return false
	}
}

func (t *Transport) sendStatelessReset(p receivedPacket) {
	defer p.buffer.Release()

	connID, err := wire.ParseConnectionID(p.data, t.connIDLen)
	if err != nil {
		t.logger.Errorf("error parsing connection ID on packet from %s: %s", p.remoteAddr, err)
		return
	}
	token := t.statelessResetter.GetStatelessResetToken(connID)
	t.logger.Debugf("Sending stateless reset to %s (connection ID: %s). Token: %#x", p.remoteAddr, connID, token)
	data := make([]byte, protocol.MinStatelessResetSize-16, protocol.MinStatelessResetSize)
	rand.Read(data)
	data[0] = (data[0] & 0x7f) | 0x40
	data = append(data, token[:]...)
	if _, err := t.conn.WritePacket(data, p.remoteAddr, p.info.OOB(), 0, protocol.ECNUnsupported); err != nil {
		t.logger.Debugf("Error sending Stateless Reset to %s: %s", p.remoteAddr, err)
	}
}

func (t *Transport) maybeHandleStatelessReset(data []byte) bool {
	// stateless resets are always short header packets
	if wire.IsLongHeaderPacket(data[0]) {
		return false
	}
	if len(data) < 17 /* type byte + 16 bytes for the reset token */ {
		return false
	}

	token := protocol.StatelessResetToken(data[len(data)-16:])
	t.mutex.Lock()
	conn, ok := t.resetTokens[token]
	t.mutex.Unlock()

	if ok {
		t.logger.Debugf("Received a stateless reset with token %#x. Closing connection.", token)
		go conn.destroy(&StatelessResetError{})
		return true
	}
	return false
}

func (t *Transport) handleNonQUICPacket(p receivedPacket) {
	// Strictly speaking, this is racy,
	// but we only care about receiving packets at some point after ReadNonQUICPacket has been called.
	if !t.readingNonQUICPackets.Load() {
		return
	}
	select {
	case t.nonQUICPackets <- p:
	default:
		if t.Tracer != nil && t.Tracer.DroppedPacket != nil {
			t.Tracer.DroppedPacket(p.remoteAddr, logging.PacketTypeNotDetermined, p.Size(), logging.PacketDropDOSPrevention)
		}
	}
}

const maxQueuedNonQUICPackets = 32

// ReadNonQUICPacket reads non-QUIC packets received on the underlying connection.
// The detection logic is very simple: Any packet that has the first and second bit of the packet set to 0.
// Note that this is stricter than the detection logic defined in RFC 9443.
func (t *Transport) ReadNonQUICPacket(ctx context.Context, b []byte) (int, net.Addr, error) {
	if err := t.init(false); err != nil {
		return 0, nil, err
	}
	if !t.readingNonQUICPackets.Load() {
		t.nonQUICPackets = make(chan receivedPacket, maxQueuedNonQUICPackets)
		t.readingNonQUICPackets.Store(true)
	}
	select {
	case <-ctx.Done():
		return 0, nil, ctx.Err()
	case p := <-t.nonQUICPackets:
		n := copy(b, p.data)
		return n, p.remoteAddr, nil
	case <-t.listening:
		return 0, nil, errors.New("closed")
	}
}

func setTLSConfigServerName(tlsConf *tls.Config, addr net.Addr, host string) {
	// If no ServerName is set, infer the ServerName from the host we're connecting to.
	if tlsConf.ServerName != "" {
		return
	}
	if host == "" {
		if udpAddr, ok := addr.(*net.UDPAddr); ok {
			tlsConf.ServerName = udpAddr.IP.String()
			return
		}
	}
	h, _, err := net.SplitHostPort(host)
	if err != nil { // This happens if the host doesn't contain a port number.
		tlsConf.ServerName = host
		return
	}
	tlsConf.ServerName = h
}

type packetHandlerMap Transport

var _ connRunner = &packetHandlerMap{}

func (h *packetHandlerMap) Add(id protocol.ConnectionID, handler packetHandler) bool /* was added */ {
	h.mutex.Lock()
	defer h.mutex.Unlock()

	if _, ok := h.handlers[id]; ok {
		h.logger.Debugf("Not adding connection ID %s, as it already exists.", id)
		return false
	}
	h.handlers[id] = handler
	h.logger.Debugf("Adding connection ID %s.", id)
	return true
}

func (h *packetHandlerMap) Get(connID protocol.ConnectionID) (packetHandler, bool) {
	h.mutex.Lock()
	defer h.mutex.Unlock()
	handler, ok := h.handlers[connID]
	return handler, ok
}

func (h *packetHandlerMap) AddResetToken(token protocol.StatelessResetToken, handler packetHandler) {
	h.mutex.Lock()
	h.resetTokens[token] = handler
	h.mutex.Unlock()
}

func (h *packetHandlerMap) RemoveResetToken(token protocol.StatelessResetToken) {
	h.mutex.Lock()
	delete(h.resetTokens, token)
	h.mutex.Unlock()
}

func (h *packetHandlerMap) AddWithConnID(clientDestConnID, newConnID protocol.ConnectionID, handler packetHandler) bool {
	h.mutex.Lock()
	defer h.mutex.Unlock()

	if _, ok := h.handlers[clientDestConnID]; ok {
		h.logger.Debugf("Not adding connection ID %s for a new connection, as it already exists.", clientDestConnID)
		return false
	}
	h.handlers[clientDestConnID] = handler
	h.handlers[newConnID] = handler
	h.logger.Debugf("Adding connection IDs %s and %s for a new connection.", clientDestConnID, newConnID)
	return true
}

func (h *packetHandlerMap) Remove(id protocol.ConnectionID) {
	h.mutex.Lock()
	delete(h.handlers, id)
	h.mutex.Unlock()
	h.logger.Debugf("Removing connection ID %s.", id)
}

// ReplaceWithClosed is called when a connection is closed.
// Depending on which side closed the connection, we need to:
// * remote close: absorb delayed packets
// * local close: retransmit the CONNECTION_CLOSE packet, in case it was lost
func (h *packetHandlerMap) ReplaceWithClosed(ids []protocol.ConnectionID, connClosePacket []byte, expiry time.Duration) {
	var handler packetHandler
	if connClosePacket != nil {
		handler = newClosedLocalConn(
			func(addr net.Addr, info packetInfo) {
				select {
				case h.closeQueue <- closePacket{payload: connClosePacket, addr: addr, info: info}:
				default:
					// We're backlogged.
					// Just drop the packet, sending CONNECTION_CLOSE copies is best effort anyway.
				}
			},
			h.logger,
		)
	} else {
		handler = newClosedRemoteConn()
	}

	h.mutex.Lock()
	for _, id := range ids {
		h.handlers[id] = handler
	}
	h.mutex.Unlock()
	h.logger.Debugf("Replacing connection for connection IDs %s with a closed connection.", ids)

	time.AfterFunc(expiry, func() {
		h.mutex.Lock()
		for _, id := range ids {
			delete(h.handlers, id)
		}
		if len(h.handlers) == 0 {
			t := (*Transport)(h)
			t.maybeStopListening()
		}
		h.mutex.Unlock()
		h.logger.Debugf("Removing connection IDs %s for a closed connection after it has been retired.", ids)
	})
}