1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979
|
// The colorful package provides all kinds of functions for working with colors.
package colorful
import (
"fmt"
"image/color"
"math"
)
// A color is stored internally using sRGB (standard RGB) values in the range 0-1
type Color struct {
R, G, B float64
}
// Implement the Go color.Color interface.
func (col Color) RGBA() (r, g, b, a uint32) {
r = uint32(col.R*65535.0 + 0.5)
g = uint32(col.G*65535.0 + 0.5)
b = uint32(col.B*65535.0 + 0.5)
a = 0xFFFF
return
}
// Constructs a colorful.Color from something implementing color.Color
func MakeColor(col color.Color) (Color, bool) {
r, g, b, a := col.RGBA()
if a == 0 {
return Color{0, 0, 0}, false
}
// Since color.Color is alpha pre-multiplied, we need to divide the
// RGB values by alpha again in order to get back the original RGB.
r *= 0xffff
r /= a
g *= 0xffff
g /= a
b *= 0xffff
b /= a
return Color{float64(r) / 65535.0, float64(g) / 65535.0, float64(b) / 65535.0}, true
}
// Might come in handy sometimes to reduce boilerplate code.
func (col Color) RGB255() (r, g, b uint8) {
r = uint8(col.R*255.0 + 0.5)
g = uint8(col.G*255.0 + 0.5)
b = uint8(col.B*255.0 + 0.5)
return
}
// Used to simplify HSLuv testing.
func (col Color) values() (float64, float64, float64) {
return col.R, col.G, col.B
}
// This is the tolerance used when comparing colors using AlmostEqualRgb.
const Delta = 1.0 / 255.0
// This is the default reference white point.
var D65 = [3]float64{0.95047, 1.00000, 1.08883}
// And another one.
var D50 = [3]float64{0.96422, 1.00000, 0.82521}
// Checks whether the color exists in RGB space, i.e. all values are in [0..1]
func (c Color) IsValid() bool {
return 0.0 <= c.R && c.R <= 1.0 &&
0.0 <= c.G && c.G <= 1.0 &&
0.0 <= c.B && c.B <= 1.0
}
// clamp01 clamps from 0 to 1.
func clamp01(v float64) float64 {
return math.Max(0.0, math.Min(v, 1.0))
}
// Returns Clamps the color into valid range, clamping each value to [0..1]
// If the color is valid already, this is a no-op.
func (c Color) Clamped() Color {
return Color{clamp01(c.R), clamp01(c.G), clamp01(c.B)}
}
func sq(v float64) float64 {
return v * v
}
func cub(v float64) float64 {
return v * v * v
}
// DistanceRgb computes the distance between two colors in RGB space.
// This is not a good measure! Rather do it in Lab space.
func (c1 Color) DistanceRgb(c2 Color) float64 {
return math.Sqrt(sq(c1.R-c2.R) + sq(c1.G-c2.G) + sq(c1.B-c2.B))
}
// DistanceLinearRGB computes the distance between two colors in linear RGB
// space. This is not useful for measuring how humans perceive color, but
// might be useful for other things, like dithering.
func (c1 Color) DistanceLinearRGB(c2 Color) float64 {
r1, g1, b1 := c1.LinearRgb()
r2, g2, b2 := c2.LinearRgb()
return math.Sqrt(sq(r1-r2) + sq(g1-g2) + sq(b1-b2))
}
// Check for equality between colors within the tolerance Delta (1/255).
func (c1 Color) AlmostEqualRgb(c2 Color) bool {
return math.Abs(c1.R-c2.R)+
math.Abs(c1.G-c2.G)+
math.Abs(c1.B-c2.B) < 3.0*Delta
}
// You don't really want to use this, do you? Go for BlendLab, BlendLuv or BlendHcl.
func (c1 Color) BlendRgb(c2 Color, t float64) Color {
return Color{c1.R + t*(c2.R-c1.R),
c1.G + t*(c2.G-c1.G),
c1.B + t*(c2.B-c1.B)}
}
// Utility used by Hxx color-spaces for interpolating between two angles in [0,360].
func interp_angle(a0, a1, t float64) float64 {
// Based on the answer here: http://stackoverflow.com/a/14498790/2366315
// With potential proof that it works here: http://math.stackexchange.com/a/2144499
delta := math.Mod(math.Mod(a1-a0, 360.0)+540, 360.0) - 180.0
return math.Mod(a0+t*delta+360.0, 360.0)
}
/// HSV ///
///////////
// From http://en.wikipedia.org/wiki/HSL_and_HSV
// Note that h is in [0..360] and s,v in [0..1]
// Hsv returns the Hue [0..360], Saturation and Value [0..1] of the color.
func (col Color) Hsv() (h, s, v float64) {
min := math.Min(math.Min(col.R, col.G), col.B)
v = math.Max(math.Max(col.R, col.G), col.B)
C := v - min
s = 0.0
if v != 0.0 {
s = C / v
}
h = 0.0 // We use 0 instead of undefined as in wp.
if min != v {
if v == col.R {
h = math.Mod((col.G-col.B)/C, 6.0)
}
if v == col.G {
h = (col.B-col.R)/C + 2.0
}
if v == col.B {
h = (col.R-col.G)/C + 4.0
}
h *= 60.0
if h < 0.0 {
h += 360.0
}
}
return
}
// Hsv creates a new Color given a Hue in [0..360], a Saturation and a Value in [0..1]
func Hsv(H, S, V float64) Color {
Hp := H / 60.0
C := V * S
X := C * (1.0 - math.Abs(math.Mod(Hp, 2.0)-1.0))
m := V - C
r, g, b := 0.0, 0.0, 0.0
switch {
case 0.0 <= Hp && Hp < 1.0:
r = C
g = X
case 1.0 <= Hp && Hp < 2.0:
r = X
g = C
case 2.0 <= Hp && Hp < 3.0:
g = C
b = X
case 3.0 <= Hp && Hp < 4.0:
g = X
b = C
case 4.0 <= Hp && Hp < 5.0:
r = X
b = C
case 5.0 <= Hp && Hp < 6.0:
r = C
b = X
}
return Color{m + r, m + g, m + b}
}
// You don't really want to use this, do you? Go for BlendLab, BlendLuv or BlendHcl.
func (c1 Color) BlendHsv(c2 Color, t float64) Color {
h1, s1, v1 := c1.Hsv()
h2, s2, v2 := c2.Hsv()
// We know that h are both in [0..360]
return Hsv(interp_angle(h1, h2, t), s1+t*(s2-s1), v1+t*(v2-v1))
}
/// HSL ///
///////////
// Hsl returns the Hue [0..360], Saturation [0..1], and Luminance (lightness) [0..1] of the color.
func (col Color) Hsl() (h, s, l float64) {
min := math.Min(math.Min(col.R, col.G), col.B)
max := math.Max(math.Max(col.R, col.G), col.B)
l = (max + min) / 2
if min == max {
s = 0
h = 0
} else {
if l < 0.5 {
s = (max - min) / (max + min)
} else {
s = (max - min) / (2.0 - max - min)
}
if max == col.R {
h = (col.G - col.B) / (max - min)
} else if max == col.G {
h = 2.0 + (col.B-col.R)/(max-min)
} else {
h = 4.0 + (col.R-col.G)/(max-min)
}
h *= 60
if h < 0 {
h += 360
}
}
return
}
// Hsl creates a new Color given a Hue in [0..360], a Saturation [0..1], and a Luminance (lightness) in [0..1]
func Hsl(h, s, l float64) Color {
if s == 0 {
return Color{l, l, l}
}
var r, g, b float64
var t1 float64
var t2 float64
var tr float64
var tg float64
var tb float64
if l < 0.5 {
t1 = l * (1.0 + s)
} else {
t1 = l + s - l*s
}
t2 = 2*l - t1
h /= 360
tr = h + 1.0/3.0
tg = h
tb = h - 1.0/3.0
if tr < 0 {
tr++
}
if tr > 1 {
tr--
}
if tg < 0 {
tg++
}
if tg > 1 {
tg--
}
if tb < 0 {
tb++
}
if tb > 1 {
tb--
}
// Red
if 6*tr < 1 {
r = t2 + (t1-t2)*6*tr
} else if 2*tr < 1 {
r = t1
} else if 3*tr < 2 {
r = t2 + (t1-t2)*(2.0/3.0-tr)*6
} else {
r = t2
}
// Green
if 6*tg < 1 {
g = t2 + (t1-t2)*6*tg
} else if 2*tg < 1 {
g = t1
} else if 3*tg < 2 {
g = t2 + (t1-t2)*(2.0/3.0-tg)*6
} else {
g = t2
}
// Blue
if 6*tb < 1 {
b = t2 + (t1-t2)*6*tb
} else if 2*tb < 1 {
b = t1
} else if 3*tb < 2 {
b = t2 + (t1-t2)*(2.0/3.0-tb)*6
} else {
b = t2
}
return Color{r, g, b}
}
/// Hex ///
///////////
// Hex returns the hex "html" representation of the color, as in #ff0080.
func (col Color) Hex() string {
// Add 0.5 for rounding
return fmt.Sprintf("#%02x%02x%02x", uint8(col.R*255.0+0.5), uint8(col.G*255.0+0.5), uint8(col.B*255.0+0.5))
}
// Hex parses a "html" hex color-string, either in the 3 "#f0c" or 6 "#ff1034" digits form.
func Hex(scol string) (Color, error) {
format := "#%02x%02x%02x"
factor := 1.0 / 255.0
if len(scol) == 4 {
format = "#%1x%1x%1x"
factor = 1.0 / 15.0
}
var r, g, b uint8
n, err := fmt.Sscanf(scol, format, &r, &g, &b)
if err != nil {
return Color{}, err
}
if n != 3 {
return Color{}, fmt.Errorf("color: %v is not a hex-color", scol)
}
return Color{float64(r) * factor, float64(g) * factor, float64(b) * factor}, nil
}
/// Linear ///
//////////////
// http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/
// http://www.brucelindbloom.com/Eqn_RGB_to_XYZ.html
func linearize(v float64) float64 {
if v <= 0.04045 {
return v / 12.92
}
return math.Pow((v+0.055)/1.055, 2.4)
}
// LinearRgb converts the color into the linear RGB space (see http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/).
func (col Color) LinearRgb() (r, g, b float64) {
r = linearize(col.R)
g = linearize(col.G)
b = linearize(col.B)
return
}
// A much faster and still quite precise linearization using a 6th-order Taylor approximation.
// See the accompanying Jupyter notebook for derivation of the constants.
func linearize_fast(v float64) float64 {
v1 := v - 0.5
v2 := v1 * v1
v3 := v2 * v1
v4 := v2 * v2
//v5 := v3*v2
return -0.248750514614486 + 0.925583310193438*v + 1.16740237321695*v2 + 0.280457026598666*v3 - 0.0757991963780179*v4 //+ 0.0437040411548932*v5
}
// FastLinearRgb is much faster than and almost as accurate as LinearRgb.
// BUT it is important to NOTE that they only produce good results for valid colors r,g,b in [0,1].
func (col Color) FastLinearRgb() (r, g, b float64) {
r = linearize_fast(col.R)
g = linearize_fast(col.G)
b = linearize_fast(col.B)
return
}
func delinearize(v float64) float64 {
if v <= 0.0031308 {
return 12.92 * v
}
return 1.055*math.Pow(v, 1.0/2.4) - 0.055
}
// LinearRgb creates an sRGB color out of the given linear RGB color (see http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/).
func LinearRgb(r, g, b float64) Color {
return Color{delinearize(r), delinearize(g), delinearize(b)}
}
func delinearize_fast(v float64) float64 {
// This function (fractional root) is much harder to linearize, so we need to split.
if v > 0.2 {
v1 := v - 0.6
v2 := v1 * v1
v3 := v2 * v1
v4 := v2 * v2
v5 := v3 * v2
return 0.442430344268235 + 0.592178981271708*v - 0.287864782562636*v2 + 0.253214392068985*v3 - 0.272557158129811*v4 + 0.325554383321718*v5
} else if v > 0.03 {
v1 := v - 0.115
v2 := v1 * v1
v3 := v2 * v1
v4 := v2 * v2
v5 := v3 * v2
return 0.194915592891669 + 1.55227076330229*v - 3.93691860257828*v2 + 18.0679839248761*v3 - 101.468750302746*v4 + 632.341487393927*v5
} else {
v1 := v - 0.015
v2 := v1 * v1
v3 := v2 * v1
v4 := v2 * v2
v5 := v3 * v2
// You can clearly see from the involved constants that the low-end is highly nonlinear.
return 0.0519565234928877 + 5.09316778537561*v - 99.0338180489702*v2 + 3484.52322764895*v3 - 150028.083412663*v4 + 7168008.42971613*v5
}
}
// FastLinearRgb is much faster than and almost as accurate as LinearRgb.
// BUT it is important to NOTE that they only produce good results for valid inputs r,g,b in [0,1].
func FastLinearRgb(r, g, b float64) Color {
return Color{delinearize_fast(r), delinearize_fast(g), delinearize_fast(b)}
}
// XyzToLinearRgb converts from CIE XYZ-space to Linear RGB space.
func XyzToLinearRgb(x, y, z float64) (r, g, b float64) {
r = 3.2409699419045214*x - 1.5373831775700935*y - 0.49861076029300328*z
g = -0.96924363628087983*x + 1.8759675015077207*y + 0.041555057407175613*z
b = 0.055630079696993609*x - 0.20397695888897657*y + 1.0569715142428786*z
return
}
func LinearRgbToXyz(r, g, b float64) (x, y, z float64) {
x = 0.41239079926595948*r + 0.35758433938387796*g + 0.18048078840183429*b
y = 0.21263900587151036*r + 0.71516867876775593*g + 0.072192315360733715*b
z = 0.019330818715591851*r + 0.11919477979462599*g + 0.95053215224966058*b
return
}
/// XYZ ///
///////////
// http://www.sjbrown.co.uk/2004/05/14/gamma-correct-rendering/
func (col Color) Xyz() (x, y, z float64) {
return LinearRgbToXyz(col.LinearRgb())
}
func Xyz(x, y, z float64) Color {
return LinearRgb(XyzToLinearRgb(x, y, z))
}
/// xyY ///
///////////
// http://www.brucelindbloom.com/Eqn_XYZ_to_xyY.html
// Well, the name is bad, since it's xyY but Golang needs me to start with a
// capital letter to make the method public.
func XyzToXyy(X, Y, Z float64) (x, y, Yout float64) {
return XyzToXyyWhiteRef(X, Y, Z, D65)
}
func XyzToXyyWhiteRef(X, Y, Z float64, wref [3]float64) (x, y, Yout float64) {
Yout = Y
N := X + Y + Z
if math.Abs(N) < 1e-14 {
// When we have black, Bruce Lindbloom recommends to use
// the reference white's chromacity for x and y.
x = wref[0] / (wref[0] + wref[1] + wref[2])
y = wref[1] / (wref[0] + wref[1] + wref[2])
} else {
x = X / N
y = Y / N
}
return
}
func XyyToXyz(x, y, Y float64) (X, Yout, Z float64) {
Yout = Y
if -1e-14 < y && y < 1e-14 {
X = 0.0
Z = 0.0
} else {
X = Y / y * x
Z = Y / y * (1.0 - x - y)
}
return
}
// Converts the given color to CIE xyY space using D65 as reference white.
// (Note that the reference white is only used for black input.)
// x, y and Y are in [0..1]
func (col Color) Xyy() (x, y, Y float64) {
return XyzToXyy(col.Xyz())
}
// Converts the given color to CIE xyY space, taking into account
// a given reference white. (i.e. the monitor's white)
// (Note that the reference white is only used for black input.)
// x, y and Y are in [0..1]
func (col Color) XyyWhiteRef(wref [3]float64) (x, y, Y float64) {
X, Y2, Z := col.Xyz()
return XyzToXyyWhiteRef(X, Y2, Z, wref)
}
// Generates a color by using data given in CIE xyY space.
// x, y and Y are in [0..1]
func Xyy(x, y, Y float64) Color {
return Xyz(XyyToXyz(x, y, Y))
}
/// L*a*b* ///
//////////////
// http://en.wikipedia.org/wiki/Lab_color_space#CIELAB-CIEXYZ_conversions
// For L*a*b*, we need to L*a*b*<->XYZ->RGB and the first one is device dependent.
func lab_f(t float64) float64 {
if t > 6.0/29.0*6.0/29.0*6.0/29.0 {
return math.Cbrt(t)
}
return t/3.0*29.0/6.0*29.0/6.0 + 4.0/29.0
}
func XyzToLab(x, y, z float64) (l, a, b float64) {
// Use D65 white as reference point by default.
// http://www.fredmiranda.com/forum/topic/1035332
// http://en.wikipedia.org/wiki/Standard_illuminant
return XyzToLabWhiteRef(x, y, z, D65)
}
func XyzToLabWhiteRef(x, y, z float64, wref [3]float64) (l, a, b float64) {
fy := lab_f(y / wref[1])
l = 1.16*fy - 0.16
a = 5.0 * (lab_f(x/wref[0]) - fy)
b = 2.0 * (fy - lab_f(z/wref[2]))
return
}
func lab_finv(t float64) float64 {
if t > 6.0/29.0 {
return t * t * t
}
return 3.0 * 6.0 / 29.0 * 6.0 / 29.0 * (t - 4.0/29.0)
}
func LabToXyz(l, a, b float64) (x, y, z float64) {
// D65 white (see above).
return LabToXyzWhiteRef(l, a, b, D65)
}
func LabToXyzWhiteRef(l, a, b float64, wref [3]float64) (x, y, z float64) {
l2 := (l + 0.16) / 1.16
x = wref[0] * lab_finv(l2+a/5.0)
y = wref[1] * lab_finv(l2)
z = wref[2] * lab_finv(l2-b/2.0)
return
}
// Converts the given color to CIE L*a*b* space using D65 as reference white.
func (col Color) Lab() (l, a, b float64) {
return XyzToLab(col.Xyz())
}
// Converts the given color to CIE L*a*b* space, taking into account
// a given reference white. (i.e. the monitor's white)
func (col Color) LabWhiteRef(wref [3]float64) (l, a, b float64) {
x, y, z := col.Xyz()
return XyzToLabWhiteRef(x, y, z, wref)
}
// Generates a color by using data given in CIE L*a*b* space using D65 as reference white.
// WARNING: many combinations of `l`, `a`, and `b` values do not have corresponding
// valid RGB values, check the FAQ in the README if you're unsure.
func Lab(l, a, b float64) Color {
return Xyz(LabToXyz(l, a, b))
}
// Generates a color by using data given in CIE L*a*b* space, taking
// into account a given reference white. (i.e. the monitor's white)
func LabWhiteRef(l, a, b float64, wref [3]float64) Color {
return Xyz(LabToXyzWhiteRef(l, a, b, wref))
}
// DistanceLab is a good measure of visual similarity between two colors!
// A result of 0 would mean identical colors, while a result of 1 or higher
// means the colors differ a lot.
func (c1 Color) DistanceLab(c2 Color) float64 {
l1, a1, b1 := c1.Lab()
l2, a2, b2 := c2.Lab()
return math.Sqrt(sq(l1-l2) + sq(a1-a2) + sq(b1-b2))
}
// DistanceCIE76 is the same as DistanceLab.
func (c1 Color) DistanceCIE76(c2 Color) float64 {
return c1.DistanceLab(c2)
}
// Uses the CIE94 formula to calculate color distance. More accurate than
// DistanceLab, but also more work.
func (cl Color) DistanceCIE94(cr Color) float64 {
l1, a1, b1 := cl.Lab()
l2, a2, b2 := cr.Lab()
// NOTE: Since all those formulas expect L,a,b values 100x larger than we
// have them in this library, we either need to adjust all constants
// in the formula, or convert the ranges of L,a,b before, and then
// scale the distances down again. The latter is less error-prone.
l1, a1, b1 = l1*100.0, a1*100.0, b1*100.0
l2, a2, b2 = l2*100.0, a2*100.0, b2*100.0
kl := 1.0 // 2.0 for textiles
kc := 1.0
kh := 1.0
k1 := 0.045 // 0.048 for textiles
k2 := 0.015 // 0.014 for textiles.
deltaL := l1 - l2
c1 := math.Sqrt(sq(a1) + sq(b1))
c2 := math.Sqrt(sq(a2) + sq(b2))
deltaCab := c1 - c2
// Not taking Sqrt here for stability, and it's unnecessary.
deltaHab2 := sq(a1-a2) + sq(b1-b2) - sq(deltaCab)
sl := 1.0
sc := 1.0 + k1*c1
sh := 1.0 + k2*c1
vL2 := sq(deltaL / (kl * sl))
vC2 := sq(deltaCab / (kc * sc))
vH2 := deltaHab2 / sq(kh*sh)
return math.Sqrt(vL2+vC2+vH2) * 0.01 // See above.
}
// DistanceCIEDE2000 uses the Delta E 2000 formula to calculate color
// distance. It is more expensive but more accurate than both DistanceLab
// and DistanceCIE94.
func (cl Color) DistanceCIEDE2000(cr Color) float64 {
return cl.DistanceCIEDE2000klch(cr, 1.0, 1.0, 1.0)
}
// DistanceCIEDE2000klch uses the Delta E 2000 formula with custom values
// for the weighting factors kL, kC, and kH.
func (cl Color) DistanceCIEDE2000klch(cr Color, kl, kc, kh float64) float64 {
l1, a1, b1 := cl.Lab()
l2, a2, b2 := cr.Lab()
// As with CIE94, we scale up the ranges of L,a,b beforehand and scale
// them down again afterwards.
l1, a1, b1 = l1*100.0, a1*100.0, b1*100.0
l2, a2, b2 = l2*100.0, a2*100.0, b2*100.0
cab1 := math.Sqrt(sq(a1) + sq(b1))
cab2 := math.Sqrt(sq(a2) + sq(b2))
cabmean := (cab1 + cab2) / 2
g := 0.5 * (1 - math.Sqrt(math.Pow(cabmean, 7)/(math.Pow(cabmean, 7)+math.Pow(25, 7))))
ap1 := (1 + g) * a1
ap2 := (1 + g) * a2
cp1 := math.Sqrt(sq(ap1) + sq(b1))
cp2 := math.Sqrt(sq(ap2) + sq(b2))
hp1 := 0.0
if b1 != ap1 || ap1 != 0 {
hp1 = math.Atan2(b1, ap1)
if hp1 < 0 {
hp1 += math.Pi * 2
}
hp1 *= 180 / math.Pi
}
hp2 := 0.0
if b2 != ap2 || ap2 != 0 {
hp2 = math.Atan2(b2, ap2)
if hp2 < 0 {
hp2 += math.Pi * 2
}
hp2 *= 180 / math.Pi
}
deltaLp := l2 - l1
deltaCp := cp2 - cp1
dhp := 0.0
cpProduct := cp1 * cp2
if cpProduct != 0 {
dhp = hp2 - hp1
if dhp > 180 {
dhp -= 360
} else if dhp < -180 {
dhp += 360
}
}
deltaHp := 2 * math.Sqrt(cpProduct) * math.Sin(dhp/2*math.Pi/180)
lpmean := (l1 + l2) / 2
cpmean := (cp1 + cp2) / 2
hpmean := hp1 + hp2
if cpProduct != 0 {
hpmean /= 2
if math.Abs(hp1-hp2) > 180 {
if hp1+hp2 < 360 {
hpmean += 180
} else {
hpmean -= 180
}
}
}
t := 1 - 0.17*math.Cos((hpmean-30)*math.Pi/180) + 0.24*math.Cos(2*hpmean*math.Pi/180) + 0.32*math.Cos((3*hpmean+6)*math.Pi/180) - 0.2*math.Cos((4*hpmean-63)*math.Pi/180)
deltaTheta := 30 * math.Exp(-sq((hpmean-275)/25))
rc := 2 * math.Sqrt(math.Pow(cpmean, 7)/(math.Pow(cpmean, 7)+math.Pow(25, 7)))
sl := 1 + (0.015*sq(lpmean-50))/math.Sqrt(20+sq(lpmean-50))
sc := 1 + 0.045*cpmean
sh := 1 + 0.015*cpmean*t
rt := -math.Sin(2*deltaTheta*math.Pi/180) * rc
return math.Sqrt(sq(deltaLp/(kl*sl))+sq(deltaCp/(kc*sc))+sq(deltaHp/(kh*sh))+rt*(deltaCp/(kc*sc))*(deltaHp/(kh*sh))) * 0.01
}
// BlendLab blends two colors in the L*a*b* color-space, which should result in a smoother blend.
// t == 0 results in c1, t == 1 results in c2
func (c1 Color) BlendLab(c2 Color, t float64) Color {
l1, a1, b1 := c1.Lab()
l2, a2, b2 := c2.Lab()
return Lab(l1+t*(l2-l1),
a1+t*(a2-a1),
b1+t*(b2-b1))
}
/// L*u*v* ///
//////////////
// http://en.wikipedia.org/wiki/CIELUV#XYZ_.E2.86.92_CIELUV_and_CIELUV_.E2.86.92_XYZ_conversions
// For L*u*v*, we need to L*u*v*<->XYZ<->RGB and the first one is device dependent.
func XyzToLuv(x, y, z float64) (l, a, b float64) {
// Use D65 white as reference point by default.
// http://www.fredmiranda.com/forum/topic/1035332
// http://en.wikipedia.org/wiki/Standard_illuminant
return XyzToLuvWhiteRef(x, y, z, D65)
}
func XyzToLuvWhiteRef(x, y, z float64, wref [3]float64) (l, u, v float64) {
if y/wref[1] <= 6.0/29.0*6.0/29.0*6.0/29.0 {
l = y / wref[1] * (29.0 / 3.0 * 29.0 / 3.0 * 29.0 / 3.0) / 100.0
} else {
l = 1.16*math.Cbrt(y/wref[1]) - 0.16
}
ubis, vbis := xyz_to_uv(x, y, z)
un, vn := xyz_to_uv(wref[0], wref[1], wref[2])
u = 13.0 * l * (ubis - un)
v = 13.0 * l * (vbis - vn)
return
}
// For this part, we do as R's graphics.hcl does, not as wikipedia does.
// Or is it the same?
func xyz_to_uv(x, y, z float64) (u, v float64) {
denom := x + 15.0*y + 3.0*z
if denom == 0.0 {
u, v = 0.0, 0.0
} else {
u = 4.0 * x / denom
v = 9.0 * y / denom
}
return
}
func LuvToXyz(l, u, v float64) (x, y, z float64) {
// D65 white (see above).
return LuvToXyzWhiteRef(l, u, v, D65)
}
func LuvToXyzWhiteRef(l, u, v float64, wref [3]float64) (x, y, z float64) {
//y = wref[1] * lab_finv((l + 0.16) / 1.16)
if l <= 0.08 {
y = wref[1] * l * 100.0 * 3.0 / 29.0 * 3.0 / 29.0 * 3.0 / 29.0
} else {
y = wref[1] * cub((l+0.16)/1.16)
}
un, vn := xyz_to_uv(wref[0], wref[1], wref[2])
if l != 0.0 {
ubis := u/(13.0*l) + un
vbis := v/(13.0*l) + vn
x = y * 9.0 * ubis / (4.0 * vbis)
z = y * (12.0 - 3.0*ubis - 20.0*vbis) / (4.0 * vbis)
} else {
x, y = 0.0, 0.0
}
return
}
// Converts the given color to CIE L*u*v* space using D65 as reference white.
// L* is in [0..1] and both u* and v* are in about [-1..1]
func (col Color) Luv() (l, u, v float64) {
return XyzToLuv(col.Xyz())
}
// Converts the given color to CIE L*u*v* space, taking into account
// a given reference white. (i.e. the monitor's white)
// L* is in [0..1] and both u* and v* are in about [-1..1]
func (col Color) LuvWhiteRef(wref [3]float64) (l, u, v float64) {
x, y, z := col.Xyz()
return XyzToLuvWhiteRef(x, y, z, wref)
}
// Generates a color by using data given in CIE L*u*v* space using D65 as reference white.
// L* is in [0..1] and both u* and v* are in about [-1..1]
// WARNING: many combinations of `l`, `u`, and `v` values do not have corresponding
// valid RGB values, check the FAQ in the README if you're unsure.
func Luv(l, u, v float64) Color {
return Xyz(LuvToXyz(l, u, v))
}
// Generates a color by using data given in CIE L*u*v* space, taking
// into account a given reference white. (i.e. the monitor's white)
// L* is in [0..1] and both u* and v* are in about [-1..1]
func LuvWhiteRef(l, u, v float64, wref [3]float64) Color {
return Xyz(LuvToXyzWhiteRef(l, u, v, wref))
}
// DistanceLuv is a good measure of visual similarity between two colors!
// A result of 0 would mean identical colors, while a result of 1 or higher
// means the colors differ a lot.
func (c1 Color) DistanceLuv(c2 Color) float64 {
l1, u1, v1 := c1.Luv()
l2, u2, v2 := c2.Luv()
return math.Sqrt(sq(l1-l2) + sq(u1-u2) + sq(v1-v2))
}
// BlendLuv blends two colors in the CIE-L*u*v* color-space, which should result in a smoother blend.
// t == 0 results in c1, t == 1 results in c2
func (c1 Color) BlendLuv(c2 Color, t float64) Color {
l1, u1, v1 := c1.Luv()
l2, u2, v2 := c2.Luv()
return Luv(l1+t*(l2-l1),
u1+t*(u2-u1),
v1+t*(v2-v1))
}
/// HCL ///
///////////
// HCL is nothing else than L*a*b* in cylindrical coordinates!
// (this was wrong on English wikipedia, I fixed it, let's hope the fix stays.)
// But it is widely popular since it is a "correct HSV"
// http://www.hunterlab.com/appnotes/an09_96a.pdf
// Converts the given color to HCL space using D65 as reference white.
// H values are in [0..360], C and L values are in [0..1] although C can overshoot 1.0
func (col Color) Hcl() (h, c, l float64) {
return col.HclWhiteRef(D65)
}
func LabToHcl(L, a, b float64) (h, c, l float64) {
// Oops, floating point workaround necessary if a ~= b and both are very small (i.e. almost zero).
if math.Abs(b-a) > 1e-4 && math.Abs(a) > 1e-4 {
h = math.Mod(57.29577951308232087721*math.Atan2(b, a)+360.0, 360.0) // Rad2Deg
} else {
h = 0.0
}
c = math.Sqrt(sq(a) + sq(b))
l = L
return
}
// Converts the given color to HCL space, taking into account
// a given reference white. (i.e. the monitor's white)
// H values are in [0..360], C and L values are in [0..1]
func (col Color) HclWhiteRef(wref [3]float64) (h, c, l float64) {
L, a, b := col.LabWhiteRef(wref)
return LabToHcl(L, a, b)
}
// Generates a color by using data given in HCL space using D65 as reference white.
// H values are in [0..360], C and L values are in [0..1]
// WARNING: many combinations of `h`, `c`, and `l` values do not have corresponding
// valid RGB values, check the FAQ in the README if you're unsure.
func Hcl(h, c, l float64) Color {
return HclWhiteRef(h, c, l, D65)
}
func HclToLab(h, c, l float64) (L, a, b float64) {
H := 0.01745329251994329576 * h // Deg2Rad
a = c * math.Cos(H)
b = c * math.Sin(H)
L = l
return
}
// Generates a color by using data given in HCL space, taking
// into account a given reference white. (i.e. the monitor's white)
// H values are in [0..360], C and L values are in [0..1]
func HclWhiteRef(h, c, l float64, wref [3]float64) Color {
L, a, b := HclToLab(h, c, l)
return LabWhiteRef(L, a, b, wref)
}
// BlendHcl blends two colors in the CIE-L*C*h° color-space, which should result in a smoother blend.
// t == 0 results in c1, t == 1 results in c2
func (col1 Color) BlendHcl(col2 Color, t float64) Color {
h1, c1, l1 := col1.Hcl()
h2, c2, l2 := col2.Hcl()
// We know that h are both in [0..360]
return Hcl(interp_angle(h1, h2, t), c1+t*(c2-c1), l1+t*(l2-l1)).Clamped()
}
// LuvLch
// Converts the given color to LuvLCh space using D65 as reference white.
// h values are in [0..360], C and L values are in [0..1] although C can overshoot 1.0
func (col Color) LuvLCh() (l, c, h float64) {
return col.LuvLChWhiteRef(D65)
}
func LuvToLuvLCh(L, u, v float64) (l, c, h float64) {
// Oops, floating point workaround necessary if u ~= v and both are very small (i.e. almost zero).
if math.Abs(v-u) > 1e-4 && math.Abs(u) > 1e-4 {
h = math.Mod(57.29577951308232087721*math.Atan2(v, u)+360.0, 360.0) // Rad2Deg
} else {
h = 0.0
}
l = L
c = math.Sqrt(sq(u) + sq(v))
return
}
// Converts the given color to LuvLCh space, taking into account
// a given reference white. (i.e. the monitor's white)
// h values are in [0..360], c and l values are in [0..1]
func (col Color) LuvLChWhiteRef(wref [3]float64) (l, c, h float64) {
return LuvToLuvLCh(col.LuvWhiteRef(wref))
}
// Generates a color by using data given in LuvLCh space using D65 as reference white.
// h values are in [0..360], C and L values are in [0..1]
// WARNING: many combinations of `l`, `c`, and `h` values do not have corresponding
// valid RGB values, check the FAQ in the README if you're unsure.
func LuvLCh(l, c, h float64) Color {
return LuvLChWhiteRef(l, c, h, D65)
}
func LuvLChToLuv(l, c, h float64) (L, u, v float64) {
H := 0.01745329251994329576 * h // Deg2Rad
u = c * math.Cos(H)
v = c * math.Sin(H)
L = l
return
}
// Generates a color by using data given in LuvLCh space, taking
// into account a given reference white. (i.e. the monitor's white)
// h values are in [0..360], C and L values are in [0..1]
func LuvLChWhiteRef(l, c, h float64, wref [3]float64) Color {
L, u, v := LuvLChToLuv(l, c, h)
return LuvWhiteRef(L, u, v, wref)
}
// BlendLuvLCh blends two colors in the cylindrical CIELUV color space.
// t == 0 results in c1, t == 1 results in c2
func (col1 Color) BlendLuvLCh(col2 Color, t float64) Color {
l1, c1, h1 := col1.LuvLCh()
l2, c2, h2 := col2.LuvLCh()
// We know that h are both in [0..360]
return LuvLCh(l1+t*(l2-l1), c1+t*(c2-c1), interp_angle(h1, h2, t))
}
|