1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
// Largely inspired by the descriptions in http://lab.medialab.sciences-po.fr/iwanthue/
// but written from scratch.
package colorful
import (
"fmt"
"math"
"math/rand"
)
// The algorithm works in L*a*b* color space and converts to RGB in the end.
// L* in [0..1], a* and b* in [-1..1]
type lab_t struct {
L, A, B float64
}
type SoftPaletteSettings struct {
// A function which can be used to restrict the allowed color-space.
CheckColor func(l, a, b float64) bool
// The higher, the better quality but the slower. Usually two figures.
Iterations int
// Use up to 160000 or 8000 samples of the L*a*b* space (and thus calls to CheckColor).
// Set this to true only if your CheckColor shapes the Lab space weirdly.
ManySamples bool
}
// Yeah, windows-stype Foo, FooEx, screw you golang...
// Uses K-means to cluster the color-space and return the means of the clusters
// as a new palette of distinctive colors. Falls back to K-medoid if the mean
// happens to fall outside of the color-space, which can only happen if you
// specify a CheckColor function.
func SoftPaletteEx(colorsCount int, settings SoftPaletteSettings) ([]Color, error) {
// Checks whether it's a valid RGB and also fulfills the potentially provided constraint.
check := func(col lab_t) bool {
c := Lab(col.L, col.A, col.B)
return c.IsValid() && (settings.CheckColor == nil || settings.CheckColor(col.L, col.A, col.B))
}
// Sample the color space. These will be the points k-means is run on.
dl := 0.05
dab := 0.1
if settings.ManySamples {
dl = 0.01
dab = 0.05
}
samples := make([]lab_t, 0, int(1.0/dl*2.0/dab*2.0/dab))
for l := 0.0; l <= 1.0; l += dl {
for a := -1.0; a <= 1.0; a += dab {
for b := -1.0; b <= 1.0; b += dab {
if check(lab_t{l, a, b}) {
samples = append(samples, lab_t{l, a, b})
}
}
}
}
// That would cause some infinite loops down there...
if len(samples) < colorsCount {
return nil, fmt.Errorf("palettegen: more colors requested (%v) than samples available (%v). Your requested color count may be wrong, you might want to use many samples or your constraint function makes the valid color space too small", colorsCount, len(samples))
} else if len(samples) == colorsCount {
return labs2cols(samples), nil // Oops?
}
// We take the initial means out of the samples, so they are in fact medoids.
// This helps us avoid infinite loops or arbitrary cutoffs with too restrictive constraints.
means := make([]lab_t, colorsCount)
for i := 0; i < colorsCount; i++ {
for means[i] = samples[rand.Intn(len(samples))]; in(means, i, means[i]); means[i] = samples[rand.Intn(len(samples))] {
}
}
clusters := make([]int, len(samples))
samples_used := make([]bool, len(samples))
// The actual k-means/medoid iterations
for i := 0; i < settings.Iterations; i++ {
// Reassing the samples to clusters, i.e. to their closest mean.
// By the way, also check if any sample is used as a medoid and if so, mark that.
for isample, sample := range samples {
samples_used[isample] = false
mindist := math.Inf(+1)
for imean, mean := range means {
dist := lab_dist(sample, mean)
if dist < mindist {
mindist = dist
clusters[isample] = imean
}
// Mark samples which are used as a medoid.
if lab_eq(sample, mean) {
samples_used[isample] = true
}
}
}
// Compute new means according to the samples.
for imean := range means {
// The new mean is the average of all samples belonging to it..
nsamples := 0
newmean := lab_t{0.0, 0.0, 0.0}
for isample, sample := range samples {
if clusters[isample] == imean {
nsamples++
newmean.L += sample.L
newmean.A += sample.A
newmean.B += sample.B
}
}
if nsamples > 0 {
newmean.L /= float64(nsamples)
newmean.A /= float64(nsamples)
newmean.B /= float64(nsamples)
} else {
// That mean doesn't have any samples? Get a new mean from the sample list!
var inewmean int
for inewmean = rand.Intn(len(samples_used)); samples_used[inewmean]; inewmean = rand.Intn(len(samples_used)) {
}
newmean = samples[inewmean]
samples_used[inewmean] = true
}
// But now we still need to check whether the new mean is an allowed color.
if nsamples > 0 && check(newmean) {
// It does, life's good (TM)
means[imean] = newmean
} else {
// New mean isn't an allowed color or doesn't have any samples!
// Switch to medoid mode and pick the closest (unused) sample.
// This should always find something thanks to len(samples) >= colorsCount
mindist := math.Inf(+1)
for isample, sample := range samples {
if !samples_used[isample] {
dist := lab_dist(sample, newmean)
if dist < mindist {
mindist = dist
newmean = sample
}
}
}
}
}
}
return labs2cols(means), nil
}
// A wrapper which uses common parameters.
func SoftPalette(colorsCount int) ([]Color, error) {
return SoftPaletteEx(colorsCount, SoftPaletteSettings{nil, 50, false})
}
func in(haystack []lab_t, upto int, needle lab_t) bool {
for i := 0; i < upto && i < len(haystack); i++ {
if haystack[i] == needle {
return true
}
}
return false
}
const LAB_DELTA = 1e-6
func lab_eq(lab1, lab2 lab_t) bool {
return math.Abs(lab1.L-lab2.L) < LAB_DELTA &&
math.Abs(lab1.A-lab2.A) < LAB_DELTA &&
math.Abs(lab1.B-lab2.B) < LAB_DELTA
}
// That's faster than using colorful's DistanceLab since we would have to
// convert back and forth for that. Here is no conversion.
func lab_dist(lab1, lab2 lab_t) float64 {
return math.Sqrt(sq(lab1.L-lab2.L) + sq(lab1.A-lab2.A) + sq(lab1.B-lab2.B))
}
func labs2cols(labs []lab_t) (cols []Color) {
cols = make([]Color, len(labs))
for k, v := range labs {
cols[k] = Lab(v.L, v.A, v.B)
}
return cols
}
|