1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710
|
package collection
import (
"errors"
"reflect"
"runtime"
"sync"
)
// Enumerable offers a means of easily converting into a channel. It is most
// useful for types where mutability is not in question.
type Enumerable interface {
Enumerate(cancel <-chan struct{}) Enumerator
}
// Enumerator exposes a new syntax for querying familiar data structures.
type Enumerator <-chan interface{}
// Predicate defines an interface for funcs that make some logical test.
type Predicate func(interface{}) bool
// Transform defines a function which takes a value, and returns some value based on the original.
type Transform func(interface{}) interface{}
// Unfolder defines a function which takes a single value, and exposes many of them as an Enumerator
type Unfolder func(interface{}) Enumerator
type emptyEnumerable struct{}
var (
errNoElements = errors.New("Enumerator encountered no elements")
errMultipleElements = errors.New("Enumerator encountered multiple elements")
)
// IsErrorNoElements determines whethr or not the given error is the result of no values being
// returned when one or more were expected.
func IsErrorNoElements(err error) bool {
return err == errNoElements
}
// IsErrorMultipleElements determines whether or not the given error is the result of multiple values
// being returned when one or zero were expected.
func IsErrorMultipleElements(err error) bool {
return err == errMultipleElements
}
// Identity is a trivial Transform which applies no operation on the value.
var Identity Transform = func(value interface{}) interface{} {
return value
}
// Empty is an Enumerable that has no elements, and will never have any elements.
var Empty Enumerable = &emptyEnumerable{}
func (e emptyEnumerable) Enumerate(cancel <-chan struct{}) Enumerator {
results := make(chan interface{})
close(results)
return results
}
// All tests whether or not all items present in an Enumerable meet a criteria.
func All(subject Enumerable, p Predicate) bool {
done := make(chan struct{})
defer close(done)
return subject.Enumerate(done).All(p)
}
// All tests whether or not all items present meet a criteria.
func (iter Enumerator) All(p Predicate) bool {
for entry := range iter {
if !p(entry) {
return false
}
}
return true
}
// Any tests an Enumerable to see if there are any elements present.
func Any(iterator Enumerable) bool {
done := make(chan struct{})
defer close(done)
for range iterator.Enumerate(done) {
return true
}
return false
}
// Anyp tests an Enumerable to see if there are any elements present that meet a criteria.
func Anyp(iterator Enumerable, p Predicate) bool {
done := make(chan struct{})
defer close(done)
for element := range iterator.Enumerate(done) {
if p(element) {
return true
}
}
return false
}
type enumerableSlice []interface{}
func (f enumerableSlice) Enumerate(cancel <-chan struct{}) Enumerator {
results := make(chan interface{})
go func() {
defer close(results)
for _, entry := range f {
select {
case results <- entry:
break
case <-cancel:
return
}
}
}()
return results
}
type enumerableValue struct {
reflect.Value
}
func (v enumerableValue) Enumerate(cancel <-chan struct{}) Enumerator {
results := make(chan interface{})
go func() {
defer close(results)
elements := v.Len()
for i := 0; i < elements; i++ {
select {
case results <- v.Index(i).Interface():
break
case <-cancel:
return
}
}
}()
return results
}
// AsEnumerable allows for easy conversion of a slice to a re-usable Enumerable object.
func AsEnumerable(entries ...interface{}) Enumerable {
if len(entries) != 1 {
return enumerableSlice(entries)
}
val := reflect.ValueOf(entries[0])
if kind := val.Kind(); kind == reflect.Slice || kind == reflect.Array {
return enumerableValue{
Value: val,
}
}
return enumerableSlice(entries)
}
// AsEnumerable stores the results of an Enumerator so the results can be enumerated over repeatedly.
func (iter Enumerator) AsEnumerable() Enumerable {
return enumerableSlice(iter.ToSlice())
}
// Count iterates over a list and keeps a running tally of the number of elements
// satisfy a predicate.
func Count(iter Enumerable, p Predicate) int {
return iter.Enumerate(nil).Count(p)
}
// Count iterates over a list and keeps a running tally of the number of elements
// satisfy a predicate.
func (iter Enumerator) Count(p Predicate) int {
tally := 0
for entry := range iter {
if p(entry) {
tally++
}
}
return tally
}
// CountAll iterates over a list and keeps a running tally of how many it's seen.
func CountAll(iter Enumerable) int {
return iter.Enumerate(nil).CountAll()
}
// CountAll iterates over a list and keeps a running tally of how many it's seen.
func (iter Enumerator) CountAll() int {
tally := 0
for range iter {
tally++
}
return tally
}
// Discard reads an enumerator to the end but does nothing with it.
// This method should be used in circumstances when it doesn't make sense to explicitly cancel the Enumeration.
func (iter Enumerator) Discard() {
for range iter {
// Intentionally Left Blank
}
}
// ElementAt retreives an item at a particular position in an Enumerator.
func ElementAt(iter Enumerable, n uint) interface{} {
done := make(chan struct{})
defer close(done)
return iter.Enumerate(done).ElementAt(n)
}
// ElementAt retreives an item at a particular position in an Enumerator.
func (iter Enumerator) ElementAt(n uint) interface{} {
for i := uint(0); i < n; i++ {
<-iter
}
return <-iter
}
// First retrieves just the first item in the list, or returns an error if there are no elements in the array.
func First(subject Enumerable) (retval interface{}, err error) {
done := make(chan struct{})
err = errNoElements
var isOpen bool
if retval, isOpen = <-subject.Enumerate(done); isOpen {
err = nil
}
close(done)
return
}
// Last retreives the item logically behind all other elements in the list.
func Last(iter Enumerable) interface{} {
return iter.Enumerate(nil).Last()
}
// Last retreives the item logically behind all other elements in the list.
func (iter Enumerator) Last() (retval interface{}) {
for retval = range iter {
// Intentionally Left Blank
}
return
}
type merger struct {
originals []Enumerable
}
func (m merger) Enumerate(cancel <-chan struct{}) Enumerator {
retval := make(chan interface{})
var wg sync.WaitGroup
wg.Add(len(m.originals))
for _, item := range m.originals {
go func(input Enumerable) {
defer wg.Done()
for value := range input.Enumerate(cancel) {
retval <- value
}
}(item)
}
go func() {
wg.Wait()
close(retval)
}()
return retval
}
// Merge takes the results as it receives them from several channels and directs
// them into a single channel.
func Merge(channels ...Enumerable) Enumerable {
return merger{
originals: channels,
}
}
// Merge takes the results of this Enumerator and others, and funnels them into
// a single Enumerator. The order of in which they will be combined is non-deterministic.
func (iter Enumerator) Merge(others ...Enumerator) Enumerator {
retval := make(chan interface{})
var wg sync.WaitGroup
wg.Add(len(others) + 1)
funnel := func(prevResult Enumerator) {
for entry := range prevResult {
retval <- entry
}
wg.Done()
}
go funnel(iter)
for _, item := range others {
go funnel(item)
}
go func() {
wg.Wait()
close(retval)
}()
return retval
}
type parallelSelecter struct {
original Enumerable
operation Transform
}
func (ps parallelSelecter) Enumerate(cancel <-chan struct{}) Enumerator {
return ps.original.Enumerate(cancel).ParallelSelect(ps.operation)
}
// ParallelSelect creates an Enumerable which will use all logically available CPUs to
// execute a Transform.
func ParallelSelect(original Enumerable, operation Transform) Enumerable {
return parallelSelecter{
original: original,
operation: operation,
}
}
// ParallelSelect will execute a Transform across all logical CPUs available to the current process.
func (iter Enumerator) ParallelSelect(operation Transform) Enumerator {
if cpus := runtime.NumCPU(); cpus != 1 {
intermediate := iter.splitN(operation, uint(cpus))
return intermediate[0].Merge(intermediate[1:]...)
}
return iter
}
type reverser struct {
original Enumerable
}
// Reverse will enumerate all values of an enumerable, store them in a Stack, then replay them all.
func Reverse(original Enumerable) Enumerable {
return reverser{
original: original,
}
}
func (r reverser) Enumerate(cancel <-chan struct{}) Enumerator {
return r.original.Enumerate(cancel).Reverse()
}
// Reverse returns items in the opposite order it encountered them in.
func (iter Enumerator) Reverse() Enumerator {
cache := NewStack()
for entry := range iter {
cache.Push(entry)
}
retval := make(chan interface{})
go func() {
for !cache.IsEmpty() {
val, _ := cache.Pop()
retval <- val
}
close(retval)
}()
return retval
}
type selecter struct {
original Enumerable
transform Transform
}
func (s selecter) Enumerate(cancel <-chan struct{}) Enumerator {
return s.original.Enumerate(cancel).Select(s.transform)
}
// Select creates a reusable stream of transformed values.
func Select(subject Enumerable, transform Transform) Enumerable {
return selecter{
original: subject,
transform: transform,
}
}
// Select iterates over a list and returns a transformed item.
func (iter Enumerator) Select(transform Transform) Enumerator {
retval := make(chan interface{})
go func() {
for item := range iter {
retval <- transform(item)
}
close(retval)
}()
return retval
}
type selectManyer struct {
original Enumerable
toMany Unfolder
}
func (s selectManyer) Enumerate(cancel <-chan struct{}) Enumerator {
return s.original.Enumerate(cancel).SelectMany(s.toMany)
}
// SelectMany allows for unfolding of values.
func SelectMany(subject Enumerable, toMany Unfolder) Enumerable {
return selectManyer{
original: subject,
toMany: toMany,
}
}
// SelectMany allows for flattening of data structures.
func (iter Enumerator) SelectMany(lister Unfolder) Enumerator {
retval := make(chan interface{})
go func() {
for parent := range iter {
for child := range lister(parent) {
retval <- child
}
}
close(retval)
}()
return retval
}
// Single retreives the only element from a list, or returns nil and an error.
func Single(iter Enumerable) (retval interface{}, err error) {
done := make(chan struct{})
defer close(done)
err = errNoElements
firstPass := true
for entry := range iter.Enumerate(done) {
if firstPass {
retval = entry
err = nil
} else {
retval = nil
err = errMultipleElements
break
}
firstPass = false
}
return
}
// Singlep retrieces the only element from a list that matches a criteria. If
// no match is found, or two or more are found, `Singlep` returns nil and an
// error.
func Singlep(iter Enumerable, pred Predicate) (retval interface{}, err error) {
iter = Where(iter, pred)
return Single(iter)
}
type skipper struct {
original Enumerable
skipCount uint
}
func (s skipper) Enumerate(cancel <-chan struct{}) Enumerator {
return s.original.Enumerate(cancel).Skip(s.skipCount)
}
// Skip creates a reusable stream which will skip the first `n` elements before iterating
// over the rest of the elements in an Enumerable.
func Skip(subject Enumerable, n uint) Enumerable {
return skipper{
original: subject,
skipCount: n,
}
}
// Skip retreives all elements after the first 'n' elements.
func (iter Enumerator) Skip(n uint) Enumerator {
results := make(chan interface{})
go func() {
defer close(results)
i := uint(0)
for entry := range iter {
if i < n {
i++
continue
}
results <- entry
}
}()
return results
}
// splitN creates N Enumerators, each will be a subset of the original Enumerator and will have
// distinct populations from one another.
func (iter Enumerator) splitN(operation Transform, n uint) []Enumerator {
results, cast := make([]chan interface{}, n, n), make([]Enumerator, n, n)
for i := uint(0); i < n; i++ {
results[i] = make(chan interface{})
cast[i] = results[i]
}
go func() {
for i := uint(0); i < n; i++ {
go func(addr uint) {
defer close(results[addr])
for {
read, ok := <-iter
if !ok {
return
}
results[addr] <- operation(read)
}
}(i)
}
}()
return cast
}
type taker struct {
original Enumerable
n uint
}
func (t taker) Enumerate(cancel <-chan struct{}) Enumerator {
return t.original.Enumerate(cancel).Take(t.n)
}
// Take retreives just the first `n` elements from an Enumerable.
func Take(subject Enumerable, n uint) Enumerable {
return taker{
original: subject,
n: n,
}
}
// Take retreives just the first 'n' elements from an Enumerator.
func (iter Enumerator) Take(n uint) Enumerator {
results := make(chan interface{})
go func() {
defer close(results)
i := uint(0)
for entry := range iter {
if i >= n {
return
}
i++
results <- entry
}
}()
return results
}
type takeWhiler struct {
original Enumerable
criteria func(interface{}, uint) bool
}
func (tw takeWhiler) Enumerate(cancel <-chan struct{}) Enumerator {
return tw.original.Enumerate(cancel).TakeWhile(tw.criteria)
}
// TakeWhile creates a reusable stream which will halt once some criteria is no longer met.
func TakeWhile(subject Enumerable, criteria func(interface{}, uint) bool) Enumerable {
return takeWhiler{
original: subject,
criteria: criteria,
}
}
// TakeWhile continues returning items as long as 'criteria' holds true.
func (iter Enumerator) TakeWhile(criteria func(interface{}, uint) bool) Enumerator {
results := make(chan interface{})
go func() {
defer close(results)
i := uint(0)
for entry := range iter {
if !criteria(entry, i) {
return
}
i++
results <- entry
}
}()
return results
}
// Tee creates two Enumerators which will have identical contents as one another.
func (iter Enumerator) Tee() (Enumerator, Enumerator) {
left, right := make(chan interface{}), make(chan interface{})
go func() {
for entry := range iter {
left <- entry
right <- entry
}
close(left)
close(right)
}()
return left, right
}
// ToSlice places all iterated over values in a Slice for easy consumption.
func ToSlice(iter Enumerable) []interface{} {
return iter.Enumerate(nil).ToSlice()
}
// ToSlice places all iterated over values in a Slice for easy consumption.
func (iter Enumerator) ToSlice() []interface{} {
retval := make([]interface{}, 0)
for entry := range iter {
retval = append(retval, entry)
}
return retval
}
type wherer struct {
original Enumerable
filter Predicate
}
func (w wherer) Enumerate(cancel <-chan struct{}) Enumerator {
retval := make(chan interface{})
go func() {
defer close(retval)
for entry := range w.original.Enumerate(cancel) {
if w.filter(entry) {
retval <- entry
}
}
}()
return retval
}
// Where creates a reusable means of filtering a stream.
func Where(original Enumerable, p Predicate) Enumerable {
return wherer{
original: original,
filter: p,
}
}
// Where iterates over a list and returns only the elements that satisfy a
// predicate.
func (iter Enumerator) Where(predicate Predicate) Enumerator {
retval := make(chan interface{})
go func() {
for item := range iter {
if predicate(item) {
retval <- item
}
}
close(retval)
}()
return retval
}
// UCount iterates over a list and keeps a running tally of the number of elements
// satisfy a predicate.
func UCount(iter Enumerable, p Predicate) uint {
return iter.Enumerate(nil).UCount(p)
}
// UCount iterates over a list and keeps a running tally of the number of elements
// satisfy a predicate.
func (iter Enumerator) UCount(p Predicate) uint {
tally := uint(0)
for entry := range iter {
if p(entry) {
tally++
}
}
return tally
}
// UCountAll iterates over a list and keeps a running tally of how many it's seen.
func UCountAll(iter Enumerable) uint {
return iter.Enumerate(nil).UCountAll()
}
// UCountAll iterates over a list and keeps a running tally of how many it's seen.
func (iter Enumerator) UCountAll() uint {
tally := uint(0)
for range iter {
tally++
}
return tally
}
|