1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
|
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// package qtls partially implements TLS 1.2, as specified in RFC 5246,
// and TLS 1.3, as specified in RFC 8446.
package qtls
// BUG(agl): The crypto/tls package only implements some countermeasures
// against Lucky13 attacks on CBC-mode encryption, and only on SHA1
// variants. See http://www.isg.rhul.ac.uk/tls/TLStiming.pdf and
// https://www.imperialviolet.org/2013/02/04/luckythirteen.html.
import (
"bytes"
"context"
"crypto"
"crypto/ecdsa"
"crypto/ed25519"
"crypto/rsa"
"crypto/x509"
"encoding/pem"
"errors"
"fmt"
"io/ioutil"
"net"
"strings"
"time"
)
// Server returns a new TLS server side connection
// using conn as the underlying transport.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Server(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
c := &Conn{
conn: conn,
config: fromConfig(config),
extraConfig: extraConfig,
}
c.handshakeFn = c.serverHandshake
return c
}
// Client returns a new TLS client side connection
// using conn as the underlying transport.
// The config cannot be nil: users must set either ServerName or
// InsecureSkipVerify in the config.
func Client(conn net.Conn, config *Config, extraConfig *ExtraConfig) *Conn {
c := &Conn{
conn: conn,
config: fromConfig(config),
extraConfig: extraConfig,
isClient: true,
}
c.handshakeFn = c.clientHandshake
return c
}
// A listener implements a network listener (net.Listener) for TLS connections.
type listener struct {
net.Listener
config *Config
extraConfig *ExtraConfig
}
// Accept waits for and returns the next incoming TLS connection.
// The returned connection is of type *Conn.
func (l *listener) Accept() (net.Conn, error) {
c, err := l.Listener.Accept()
if err != nil {
return nil, err
}
return Server(c, l.config, l.extraConfig), nil
}
// NewListener creates a Listener which accepts connections from an inner
// Listener and wraps each connection with Server.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func NewListener(inner net.Listener, config *Config, extraConfig *ExtraConfig) net.Listener {
l := new(listener)
l.Listener = inner
l.config = config
l.extraConfig = extraConfig
return l
}
// Listen creates a TLS listener accepting connections on the
// given network address using net.Listen.
// The configuration config must be non-nil and must include
// at least one certificate or else set GetCertificate.
func Listen(network, laddr string, config *Config, extraConfig *ExtraConfig) (net.Listener, error) {
if config == nil || len(config.Certificates) == 0 &&
config.GetCertificate == nil && config.GetConfigForClient == nil {
return nil, errors.New("tls: neither Certificates, GetCertificate, nor GetConfigForClient set in Config")
}
l, err := net.Listen(network, laddr)
if err != nil {
return nil, err
}
return NewListener(l, config, extraConfig), nil
}
type timeoutError struct{}
func (timeoutError) Error() string { return "tls: DialWithDialer timed out" }
func (timeoutError) Timeout() bool { return true }
func (timeoutError) Temporary() bool { return true }
// DialWithDialer connects to the given network address using dialer.Dial and
// then initiates a TLS handshake, returning the resulting TLS connection. Any
// timeout or deadline given in the dialer apply to connection and TLS
// handshake as a whole.
//
// DialWithDialer interprets a nil configuration as equivalent to the zero
// configuration; see the documentation of Config for the defaults.
func DialWithDialer(dialer *net.Dialer, network, addr string, config *Config, extraConfig *ExtraConfig) (*Conn, error) {
return dial(context.Background(), dialer, network, addr, config, extraConfig)
}
func dial(ctx context.Context, netDialer *net.Dialer, network, addr string, config *Config, extraConfig *ExtraConfig) (*Conn, error) {
// We want the Timeout and Deadline values from dialer to cover the
// whole process: TCP connection and TLS handshake. This means that we
// also need to start our own timers now.
timeout := netDialer.Timeout
if !netDialer.Deadline.IsZero() {
deadlineTimeout := time.Until(netDialer.Deadline)
if timeout == 0 || deadlineTimeout < timeout {
timeout = deadlineTimeout
}
}
// hsErrCh is non-nil if we might not wait for Handshake to complete.
var hsErrCh chan error
if timeout != 0 || ctx.Done() != nil {
hsErrCh = make(chan error, 2)
}
if timeout != 0 {
timer := time.AfterFunc(timeout, func() {
hsErrCh <- timeoutError{}
})
defer timer.Stop()
}
rawConn, err := netDialer.DialContext(ctx, network, addr)
if err != nil {
return nil, err
}
colonPos := strings.LastIndex(addr, ":")
if colonPos == -1 {
colonPos = len(addr)
}
hostname := addr[:colonPos]
if config == nil {
config = defaultConfig()
}
// If no ServerName is set, infer the ServerName
// from the hostname we're connecting to.
if config.ServerName == "" {
// Make a copy to avoid polluting argument or default.
c := config.Clone()
c.ServerName = hostname
config = c
}
conn := Client(rawConn, config, extraConfig)
if hsErrCh == nil {
err = conn.Handshake()
} else {
go func() {
hsErrCh <- conn.Handshake()
}()
select {
case <-ctx.Done():
err = ctx.Err()
case err = <-hsErrCh:
if err != nil {
// If the error was due to the context
// closing, prefer the context's error, rather
// than some random network teardown error.
if e := ctx.Err(); e != nil {
err = e
}
}
}
}
if err != nil {
rawConn.Close()
return nil, err
}
return conn, nil
}
// Dial connects to the given network address using net.Dial
// and then initiates a TLS handshake, returning the resulting
// TLS connection.
// Dial interprets a nil configuration as equivalent to
// the zero configuration; see the documentation of Config
// for the defaults.
func Dial(network, addr string, config *Config, extraConfig *ExtraConfig) (*Conn, error) {
return DialWithDialer(new(net.Dialer), network, addr, config, extraConfig)
}
// Dialer dials TLS connections given a configuration and a Dialer for the
// underlying connection.
type Dialer struct {
// NetDialer is the optional dialer to use for the TLS connections'
// underlying TCP connections.
// A nil NetDialer is equivalent to the net.Dialer zero value.
NetDialer *net.Dialer
// Config is the TLS configuration to use for new connections.
// A nil configuration is equivalent to the zero
// configuration; see the documentation of Config for the
// defaults.
Config *Config
ExtraConfig *ExtraConfig
}
// Dial connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The returned Conn, if any, will always be of type *Conn.
func (d *Dialer) Dial(network, addr string) (net.Conn, error) {
return d.DialContext(context.Background(), network, addr)
}
func (d *Dialer) netDialer() *net.Dialer {
if d.NetDialer != nil {
return d.NetDialer
}
return new(net.Dialer)
}
// DialContext connects to the given network address and initiates a TLS
// handshake, returning the resulting TLS connection.
//
// The provided Context must be non-nil. If the context expires before
// the connection is complete, an error is returned. Once successfully
// connected, any expiration of the context will not affect the
// connection.
//
// The returned Conn, if any, will always be of type *Conn.
func (d *Dialer) DialContext(ctx context.Context, network, addr string) (net.Conn, error) {
c, err := dial(ctx, d.netDialer(), network, addr, d.Config, d.ExtraConfig)
if err != nil {
// Don't return c (a typed nil) in an interface.
return nil, err
}
return c, nil
}
// LoadX509KeyPair reads and parses a public/private key pair from a pair
// of files. The files must contain PEM encoded data. The certificate file
// may contain intermediate certificates following the leaf certificate to
// form a certificate chain. On successful return, Certificate.Leaf will
// be nil because the parsed form of the certificate is not retained.
func LoadX509KeyPair(certFile, keyFile string) (Certificate, error) {
certPEMBlock, err := ioutil.ReadFile(certFile)
if err != nil {
return Certificate{}, err
}
keyPEMBlock, err := ioutil.ReadFile(keyFile)
if err != nil {
return Certificate{}, err
}
return X509KeyPair(certPEMBlock, keyPEMBlock)
}
// X509KeyPair parses a public/private key pair from a pair of
// PEM encoded data. On successful return, Certificate.Leaf will be nil because
// the parsed form of the certificate is not retained.
func X509KeyPair(certPEMBlock, keyPEMBlock []byte) (Certificate, error) {
fail := func(err error) (Certificate, error) { return Certificate{}, err }
var cert Certificate
var skippedBlockTypes []string
for {
var certDERBlock *pem.Block
certDERBlock, certPEMBlock = pem.Decode(certPEMBlock)
if certDERBlock == nil {
break
}
if certDERBlock.Type == "CERTIFICATE" {
cert.Certificate = append(cert.Certificate, certDERBlock.Bytes)
} else {
skippedBlockTypes = append(skippedBlockTypes, certDERBlock.Type)
}
}
if len(cert.Certificate) == 0 {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in certificate input"))
}
if len(skippedBlockTypes) == 1 && strings.HasSuffix(skippedBlockTypes[0], "PRIVATE KEY") {
return fail(errors.New("tls: failed to find certificate PEM data in certificate input, but did find a private key; PEM inputs may have been switched"))
}
return fail(fmt.Errorf("tls: failed to find \"CERTIFICATE\" PEM block in certificate input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
skippedBlockTypes = skippedBlockTypes[:0]
var keyDERBlock *pem.Block
for {
keyDERBlock, keyPEMBlock = pem.Decode(keyPEMBlock)
if keyDERBlock == nil {
if len(skippedBlockTypes) == 0 {
return fail(errors.New("tls: failed to find any PEM data in key input"))
}
if len(skippedBlockTypes) == 1 && skippedBlockTypes[0] == "CERTIFICATE" {
return fail(errors.New("tls: found a certificate rather than a key in the PEM for the private key"))
}
return fail(fmt.Errorf("tls: failed to find PEM block with type ending in \"PRIVATE KEY\" in key input after skipping PEM blocks of the following types: %v", skippedBlockTypes))
}
if keyDERBlock.Type == "PRIVATE KEY" || strings.HasSuffix(keyDERBlock.Type, " PRIVATE KEY") {
break
}
skippedBlockTypes = append(skippedBlockTypes, keyDERBlock.Type)
}
// We don't need to parse the public key for TLS, but we so do anyway
// to check that it looks sane and matches the private key.
x509Cert, err := x509.ParseCertificate(cert.Certificate[0])
if err != nil {
return fail(err)
}
cert.PrivateKey, err = parsePrivateKey(keyDERBlock.Bytes)
if err != nil {
return fail(err)
}
switch pub := x509Cert.PublicKey.(type) {
case *rsa.PublicKey:
priv, ok := cert.PrivateKey.(*rsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.N.Cmp(priv.N) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case *ecdsa.PublicKey:
priv, ok := cert.PrivateKey.(*ecdsa.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if pub.X.Cmp(priv.X) != 0 || pub.Y.Cmp(priv.Y) != 0 {
return fail(errors.New("tls: private key does not match public key"))
}
case ed25519.PublicKey:
priv, ok := cert.PrivateKey.(ed25519.PrivateKey)
if !ok {
return fail(errors.New("tls: private key type does not match public key type"))
}
if !bytes.Equal(priv.Public().(ed25519.PublicKey), pub) {
return fail(errors.New("tls: private key does not match public key"))
}
default:
return fail(errors.New("tls: unknown public key algorithm"))
}
return cert, nil
}
// Attempt to parse the given private key DER block. OpenSSL 0.9.8 generates
// PKCS #1 private keys by default, while OpenSSL 1.0.0 generates PKCS #8 keys.
// OpenSSL ecparam generates SEC1 EC private keys for ECDSA. We try all three.
func parsePrivateKey(der []byte) (crypto.PrivateKey, error) {
if key, err := x509.ParsePKCS1PrivateKey(der); err == nil {
return key, nil
}
if key, err := x509.ParsePKCS8PrivateKey(der); err == nil {
switch key := key.(type) {
case *rsa.PrivateKey, *ecdsa.PrivateKey, ed25519.PrivateKey:
return key, nil
default:
return nil, errors.New("tls: found unknown private key type in PKCS#8 wrapping")
}
}
if key, err := x509.ParseECPrivateKey(der); err == nil {
return key, nil
}
return nil, errors.New("tls: failed to parse private key")
}
|