1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
|
// Copyright (c) 2020, Maxime Soulé
// All rights reserved.
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
package anchors
import (
"errors"
"fmt"
"math"
"reflect"
"sync"
)
type anchor struct {
Anchor reflect.Value // Anchor is the generated value used as anchor
Operator reflect.Value // Operator is a td.TestDeep behind
}
// Info gathers all anchors information.
type Info struct {
sync.Mutex
index int
persist bool
anchors map[any]anchor
}
// NewInfo returns a new instance of [*Info].
func NewInfo() *Info {
return &Info{
anchors: map[any]anchor{},
}
}
// AddAnchor anchors a new operator op, with type typ then returns the
// anchor value.
func (i *Info) AddAnchor(typ reflect.Type, op reflect.Value) (reflect.Value, error) {
i.Lock()
defer i.Unlock()
anc, key, err := i.build(typ)
if err != nil {
return reflect.Value{}, err
}
if i.anchors == nil {
i.anchors = map[any]anchor{}
}
i.anchors[key] = anchor{
Anchor: anc,
Operator: op,
}
return anc, nil
}
// DoAnchorsPersist returns true if anchors are persistent across tests.
func (i *Info) DoAnchorsPersist() bool {
i.Lock()
defer i.Unlock()
return i.persist
}
// SetAnchorsPersist enables or disables anchors persistence.
func (i *Info) SetAnchorsPersist(persist bool) {
i.Lock()
defer i.Unlock()
i.persist = persist
}
// ResetAnchors removes all anchors if persistence is disabled or
// force is true.
func (i *Info) ResetAnchors(force bool) {
i.Lock()
defer i.Unlock()
if !i.persist || force {
for k := range i.anchors {
delete(i.anchors, k)
}
i.index = 0
}
}
func (i *Info) nextIndex() (n int) {
n = i.index
i.index++
return
}
// ResolveAnchor checks whether the passed value matches an anchored
// operator or not. If yes, this operator is returned with true. If
// no, the value is returned as is with false.
func (i *Info) ResolveAnchor(v reflect.Value) (reflect.Value, bool) {
if i == nil || !v.CanInterface() {
return v, false
}
// Shortcut
i.Lock()
la := len(i.anchors)
i.Unlock()
if la == 0 {
return v, false
}
var key any
sw:
switch v.Kind() {
case reflect.Int,
reflect.Int8,
reflect.Int16,
reflect.Int32,
reflect.Int64,
reflect.Uint,
reflect.Uint8,
reflect.Uint16,
reflect.Uint32,
reflect.Uint64,
reflect.Uintptr,
reflect.Float32,
reflect.Float64,
reflect.Complex64,
reflect.Complex128,
reflect.String:
key = v.Interface()
case reflect.Chan,
reflect.Map,
reflect.Slice,
reflect.Ptr:
key = v.Pointer()
case reflect.Struct:
typ := v.Type()
if typ.Comparable() {
// Check for anchorable types. No need of 2 passes here.
for _, at := range AnchorableTypes {
if typ == at.typ || at.typ.ConvertibleTo(typ) { // 1.17 ok as struct here
key = v.Interface()
break sw
}
}
}
fallthrough
default:
return v, false
}
i.Lock()
defer i.Unlock()
if anchor, ok := i.anchors[key]; ok {
return anchor.Operator, true
}
return v, false
}
func (i *Info) setInt(typ reflect.Type, min int64) (reflect.Value, any) {
nvm := reflect.New(typ).Elem()
nvm.SetInt(min + int64(i.nextIndex()))
return nvm, nvm.Interface()
}
func (i *Info) setUint(typ reflect.Type, max uint64) (reflect.Value, any) {
nvm := reflect.New(typ).Elem()
nvm.SetUint(max - uint64(i.nextIndex()))
return nvm, nvm.Interface()
}
func (i *Info) setFloat(typ reflect.Type, min float64) (reflect.Value, any) {
nvm := reflect.New(typ).Elem()
nvm.SetFloat(min + float64(i.nextIndex()))
return nvm, nvm.Interface()
}
func (i *Info) setComplex(typ reflect.Type, min float64) (reflect.Value, any) {
nvm := reflect.New(typ).Elem()
min += float64(i.nextIndex())
nvm.SetComplex(complex(min, min))
return nvm, nvm.Interface()
}
// build builds a new value of type "typ" and returns it under two
// forms:
// - the new value itself as a reflect.Value;
// - an any usable as a key in an AnchorsSet map.
//
// It returns an error if "typ" kind is not recognized or if it is a
// non-anchorable struct.
func (i *Info) build(typ reflect.Type) (reflect.Value, any, error) {
// For each numeric type, anchor the operator on a number close to
// the limit of this type, but not at the extreme limit to avoid
// edge cases where these limits are used in real world and so avoid
// collisions
switch typ.Kind() {
case reflect.Int:
nvm, iface := i.setInt(typ, int64(^int(^uint(0)>>1))+1004293)
return nvm, iface, nil
case reflect.Int8:
nvm, iface := i.setInt(typ, math.MinInt8+13)
return nvm, iface, nil
case reflect.Int16:
nvm, iface := i.setInt(typ, math.MinInt16+1049)
return nvm, iface, nil
case reflect.Int32:
nvm, iface := i.setInt(typ, math.MinInt32+1004293)
return nvm, iface, nil
case reflect.Int64:
nvm, iface := i.setInt(typ, math.MinInt64+1000424443)
return nvm, iface, nil
case reflect.Uint:
nvm, iface := i.setUint(typ, uint64(^uint(0))-1004293)
return nvm, iface, nil
case reflect.Uint8:
nvm, iface := i.setUint(typ, math.MaxUint8-29)
return nvm, iface, nil
case reflect.Uint16:
nvm, iface := i.setUint(typ, math.MaxUint16-2099)
return nvm, iface, nil
case reflect.Uint32:
nvm, iface := i.setUint(typ, math.MaxUint32-2008571)
return nvm, iface, nil
case reflect.Uint64:
nvm, iface := i.setUint(typ, math.MaxUint64-2000848901)
return nvm, iface, nil
case reflect.Uintptr:
nvm, iface := i.setUint(typ, uint64(^uintptr(0))-2000848901)
return nvm, iface, nil
case reflect.Float32:
nvm, iface := i.setFloat(typ, -(1<<24)+104243)
return nvm, iface, nil
case reflect.Float64:
nvm, iface := i.setFloat(typ, -(1<<53)+100004243)
return nvm, iface, nil
case reflect.Complex64:
nvm, iface := i.setComplex(typ, -(1<<24)+104243)
return nvm, iface, nil
case reflect.Complex128:
nvm, iface := i.setComplex(typ, -(1<<53)+100004243)
return nvm, iface, nil
case reflect.String:
nvm := reflect.New(typ).Elem()
nvm.SetString(fmt.Sprintf("<testdeep@anchor#%d>", i.nextIndex()))
return nvm, nvm.Interface(), nil
case reflect.Chan:
nvm := reflect.MakeChan(typ, 0)
return nvm, nvm.Pointer(), nil
case reflect.Map:
nvm := reflect.MakeMap(typ)
return nvm, nvm.Pointer(), nil
case reflect.Slice:
nvm := reflect.MakeSlice(typ, 0, 1) // cap=1 to avoid same ptr below
return nvm, nvm.Pointer(), nil
case reflect.Ptr:
nvm := reflect.New(typ.Elem())
return nvm, nvm.Pointer(), nil
case reflect.Struct:
// First pass for the exact type
for _, at := range AnchorableTypes {
if typ == at.typ {
nvm := at.builder.Call([]reflect.Value{reflect.ValueOf(i.nextIndex())})[0]
return nvm, nvm.Interface(), nil
}
}
// Second pass for convertible type
for _, at := range AnchorableTypes {
if at.typ.ConvertibleTo(typ) {
nvm := at.builder.Call([]reflect.Value{reflect.ValueOf(i.nextIndex())})[0].
Convert(typ)
return nvm, nvm.Interface(), nil
}
}
return reflect.Value{}, nil,
errors.New(typ.String() + " struct type is not supported as an anchor. Try AddAnchorableStructType")
default:
return reflect.Value{}, nil,
errors.New(typ.Kind().String() + " kind is not supported as an anchor")
}
}
|