1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261
|
package arp
import (
"bytes"
"encoding/binary"
"errors"
"io"
"net"
"net/netip"
"github.com/mdlayher/ethernet"
)
var (
// ErrInvalidHardwareAddr is returned when one or more invalid hardware
// addresses are passed to NewPacket.
ErrInvalidHardwareAddr = errors.New("invalid hardware address")
// ErrInvalidIP is returned when one or more invalid IPv4 addresses are
// passed to NewPacket.
ErrInvalidIP = errors.New("invalid IPv4 address")
// errInvalidARPPacket is returned when an ethernet frame does not
// indicate that an ARP packet is contained in its payload.
errInvalidARPPacket = errors.New("invalid ARP packet")
)
//go:generate stringer -output=string.go -type=Operation
// An Operation is an ARP operation, such as request or reply.
type Operation uint16
// Operation constants which indicate an ARP request or reply.
const (
OperationRequest Operation = 1
OperationReply Operation = 2
)
// A Packet is a raw ARP packet, as described in RFC 826.
type Packet struct {
// HardwareType specifies an IANA-assigned hardware type, as described
// in RFC 826.
HardwareType uint16
// ProtocolType specifies the internetwork protocol for which the ARP
// request is intended. Typically, this is the IPv4 EtherType.
ProtocolType uint16
// HardwareAddrLength specifies the length of the sender and target
// hardware addresses included in a Packet.
HardwareAddrLength uint8
// IPLength specifies the length of the sender and target IPv4 addresses
// included in a Packet.
IPLength uint8
// Operation specifies the ARP operation being performed, such as request
// or reply.
Operation Operation
// SenderHardwareAddr specifies the hardware address of the sender of this
// Packet.
SenderHardwareAddr net.HardwareAddr
// SenderIP specifies the IPv4 address of the sender of this Packet.
SenderIP netip.Addr
// TargetHardwareAddr specifies the hardware address of the target of this
// Packet.
TargetHardwareAddr net.HardwareAddr
// TargetIP specifies the IPv4 address of the target of this Packet.
TargetIP netip.Addr
}
// NewPacket creates a new Packet from an input Operation and hardware/IPv4
// address values for both a sender and target.
//
// If either hardware address is less than 6 bytes in length, or there is a
// length mismatch between the two, ErrInvalidHardwareAddr is returned.
//
// If either IP address is not an IPv4 address, or there is a length mismatch
// between the two, ErrInvalidIP is returned.
func NewPacket(op Operation, srcHW net.HardwareAddr, srcIP netip.Addr, dstHW net.HardwareAddr, dstIP netip.Addr) (*Packet, error) {
// Validate hardware addresses for minimum length, and matching length
if len(srcHW) < 6 {
return nil, ErrInvalidHardwareAddr
}
if len(dstHW) < 6 {
return nil, ErrInvalidHardwareAddr
}
if !bytes.Equal(ethernet.Broadcast, dstHW) && len(srcHW) != len(dstHW) {
return nil, ErrInvalidHardwareAddr
}
// Validate IP addresses to ensure they are IPv4 addresses, and
// correct length
var invalidIP netip.Addr
if !srcIP.IsValid() || !srcIP.Is4() {
return nil, ErrInvalidIP
}
if !dstIP.Is4() || dstIP == invalidIP {
return nil, ErrInvalidIP
}
return &Packet{
// There is no Go-native way to detect hardware type of a network
// interface, so default to 1 (ethernet 10Mb) for now
HardwareType: 1,
// Default to EtherType for IPv4
ProtocolType: uint16(ethernet.EtherTypeIPv4),
// Populate other fields using input data
HardwareAddrLength: uint8(len(srcHW)),
IPLength: uint8(4),
Operation: op,
SenderHardwareAddr: srcHW,
SenderIP: srcIP,
TargetHardwareAddr: dstHW,
TargetIP: dstIP,
}, nil
}
// MarshalBinary allocates a byte slice containing the data from a Packet.
//
// MarshalBinary never returns an error.
func (p *Packet) MarshalBinary() ([]byte, error) {
// 2 bytes: hardware type
// 2 bytes: protocol type
// 1 byte : hardware address length
// 1 byte : protocol length
// 2 bytes: operation
// N bytes: source hardware address
// N bytes: source protocol address
// N bytes: target hardware address
// N bytes: target protocol address
// Though an IPv4 address should always 4 bytes, go-fuzz
// very quickly created several crasher scenarios which
// indicated that these values can lie.
b := make([]byte, 2+2+1+1+2+(p.IPLength*2)+(p.HardwareAddrLength*2))
// Marshal fixed length data
binary.BigEndian.PutUint16(b[0:2], p.HardwareType)
binary.BigEndian.PutUint16(b[2:4], p.ProtocolType)
b[4] = p.HardwareAddrLength
b[5] = p.IPLength
binary.BigEndian.PutUint16(b[6:8], uint16(p.Operation))
// Marshal variable length data at correct offset using lengths
// defined in p
n := 8
hal := int(p.HardwareAddrLength)
pl := int(p.IPLength)
copy(b[n:n+hal], p.SenderHardwareAddr)
n += hal
sender4 := p.SenderIP.As4()
copy(b[n:n+pl], sender4[:])
n += pl
copy(b[n:n+hal], p.TargetHardwareAddr)
n += hal
target4 := p.TargetIP.As4()
copy(b[n:n+pl], target4[:])
return b, nil
}
// UnmarshalBinary unmarshals a raw byte slice into a Packet.
func (p *Packet) UnmarshalBinary(b []byte) error {
// Must have enough room to retrieve hardware address and IP lengths
if len(b) < 8 {
return io.ErrUnexpectedEOF
}
// Retrieve fixed length data
p.HardwareType = binary.BigEndian.Uint16(b[0:2])
p.ProtocolType = binary.BigEndian.Uint16(b[2:4])
p.HardwareAddrLength = b[4]
p.IPLength = b[5]
p.Operation = Operation(binary.BigEndian.Uint16(b[6:8]))
// Unmarshal variable length data at correct offset using lengths
// defined by ml and il
//
// These variables are meant to improve readability of offset calculations
// for the code below
n := 8
ml := int(p.HardwareAddrLength)
ml2 := ml * 2
il := int(p.IPLength)
il2 := il * 2
// Must have enough room to retrieve both hardware address and IP addresses
addrl := n + ml2 + il2
if len(b) < addrl {
return io.ErrUnexpectedEOF
}
// Allocate single byte slice to store address information, which
// is resliced into fields
bb := make([]byte, addrl-n)
// Sender hardware address
copy(bb[0:ml], b[n:n+ml])
p.SenderHardwareAddr = bb[0:ml]
n += ml
// Sender IP address
copy(bb[ml:ml+il], b[n:n+il])
senderIP, ok := netip.AddrFromSlice(bb[ml : ml+il])
if !ok {
return errors.New("Invalid Sender IP address")
}
p.SenderIP = senderIP
n += il
// Target hardware address
copy(bb[ml+il:ml2+il], b[n:n+ml])
p.TargetHardwareAddr = bb[ml+il : ml2+il]
n += ml
// Target IP address
copy(bb[ml2+il:ml2+il2], b[n:n+il])
targetIP, ok := netip.AddrFromSlice(bb[ml2+il : ml2+il2])
if !ok {
return errors.New("Invalid Target IP address")
}
p.TargetIP = targetIP
return nil
}
func parsePacket(buf []byte) (*Packet, *ethernet.Frame, error) {
f := new(ethernet.Frame)
if err := f.UnmarshalBinary(buf); err != nil {
return nil, nil, err
}
// Ignore frames which do not have ARP EtherType
if f.EtherType != ethernet.EtherTypeARP {
return nil, nil, errInvalidARPPacket
}
p := new(Packet)
if err := p.UnmarshalBinary(f.Payload); err != nil {
return nil, nil, err
}
return p, f, nil
}
|