1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301
|
// Package ethernet implements marshaling and unmarshaling of IEEE 802.3
// Ethernet II frames and IEEE 802.1Q VLAN tags.
package ethernet
import (
"encoding/binary"
"errors"
"fmt"
"hash/crc32"
"io"
"net"
)
//go:generate stringer -output=string.go -type=EtherType
const (
// minPayload is the minimum payload size for an Ethernet frame, assuming
// that no 802.1Q VLAN tags are present.
minPayload = 46
)
var (
// Broadcast is a special hardware address which indicates a Frame should
// be sent to every device on a given LAN segment.
Broadcast = net.HardwareAddr{0xff, 0xff, 0xff, 0xff, 0xff, 0xff}
)
var (
// ErrInvalidFCS is returned when Frame.UnmarshalFCS detects an incorrect
// Ethernet frame check sequence in a byte slice for a Frame.
ErrInvalidFCS = errors.New("invalid frame check sequence")
)
// An EtherType is a value used to identify an upper layer protocol
// encapsulated in a Frame.
//
// A list of IANA-assigned EtherType values may be found here:
// http://www.iana.org/assignments/ieee-802-numbers/ieee-802-numbers.xhtml.
type EtherType uint16
// Common EtherType values frequently used in a Frame.
const (
EtherTypeIPv4 EtherType = 0x0800
EtherTypeARP EtherType = 0x0806
EtherTypeIPv6 EtherType = 0x86DD
// EtherTypeVLAN and EtherTypeServiceVLAN are used as 802.1Q Tag Protocol
// Identifiers (TPIDs).
EtherTypeVLAN EtherType = 0x8100
EtherTypeServiceVLAN EtherType = 0x88a8
)
// A Frame is an IEEE 802.3 Ethernet II frame. A Frame contains information
// such as source and destination hardware addresses, zero or more optional
// 802.1Q VLAN tags, an EtherType, and payload data.
type Frame struct {
// Destination specifies the destination hardware address for this Frame.
//
// If this address is set to Broadcast, the Frame will be sent to every
// device on a given LAN segment.
Destination net.HardwareAddr
// Source specifies the source hardware address for this Frame.
//
// Typically, this is the hardware address of the network interface used to
// send this Frame.
Source net.HardwareAddr
// ServiceVLAN specifies an optional 802.1Q service VLAN tag, for use with
// 802.1ad double tagging, or "Q-in-Q". If ServiceVLAN is not nil, VLAN must
// not be nil as well.
//
// Most users should leave this field set to nil and use VLAN instead.
ServiceVLAN *VLAN
// VLAN specifies an optional 802.1Q customer VLAN tag, which may or may
// not be present in a Frame. It is important to note that the operating
// system may automatically strip VLAN tags before they can be parsed.
VLAN *VLAN
// EtherType is a value used to identify an upper layer protocol
// encapsulated in this Frame.
EtherType EtherType
// Payload is a variable length data payload encapsulated by this Frame.
Payload []byte
}
// MarshalBinary allocates a byte slice and marshals a Frame into binary form.
func (f *Frame) MarshalBinary() ([]byte, error) {
b := make([]byte, f.length())
_, err := f.read(b)
return b, err
}
// MarshalFCS allocates a byte slice, marshals a Frame into binary form, and
// finally calculates and places a 4-byte IEEE CRC32 frame check sequence at
// the end of the slice.
//
// Most users should use MarshalBinary instead. MarshalFCS is provided as a
// convenience for rare occasions when the operating system cannot
// automatically generate a frame check sequence for an Ethernet frame.
func (f *Frame) MarshalFCS() ([]byte, error) {
// Frame length with 4 extra bytes for frame check sequence
b := make([]byte, f.length()+4)
if _, err := f.read(b); err != nil {
return nil, err
}
// Compute IEEE CRC32 checksum of frame bytes and place it directly
// in the last four bytes of the slice
binary.BigEndian.PutUint32(b[len(b)-4:], crc32.ChecksumIEEE(b[0:len(b)-4]))
return b, nil
}
// read reads data from a Frame into b. read is used to marshal a Frame
// into binary form, but does not allocate on its own.
func (f *Frame) read(b []byte) (int, error) {
// S-VLAN must also have accompanying C-VLAN.
if f.ServiceVLAN != nil && f.VLAN == nil {
return 0, ErrInvalidVLAN
}
copy(b[0:6], f.Destination)
copy(b[6:12], f.Source)
// Marshal each non-nil VLAN tag into bytes, inserting the appropriate
// EtherType/TPID before each, so devices know that one or more VLANs
// are present.
vlans := []struct {
vlan *VLAN
tpid EtherType
}{
{vlan: f.ServiceVLAN, tpid: EtherTypeServiceVLAN},
{vlan: f.VLAN, tpid: EtherTypeVLAN},
}
n := 12
for _, vt := range vlans {
if vt.vlan == nil {
continue
}
// Add VLAN EtherType and VLAN bytes.
binary.BigEndian.PutUint16(b[n:n+2], uint16(vt.tpid))
if _, err := vt.vlan.read(b[n+2 : n+4]); err != nil {
return 0, err
}
n += 4
}
// Marshal actual EtherType after any VLANs, copy payload into
// output bytes.
binary.BigEndian.PutUint16(b[n:n+2], uint16(f.EtherType))
copy(b[n+2:], f.Payload)
return len(b), nil
}
// UnmarshalBinary unmarshals a byte slice into a Frame.
func (f *Frame) UnmarshalBinary(b []byte) error {
// Verify that both hardware addresses and a single EtherType are present
if len(b) < 14 {
return io.ErrUnexpectedEOF
}
// Track offset in packet for reading data
n := 14
// Continue looping and parsing VLAN tags until no more VLAN EtherType
// values are detected
et := EtherType(binary.BigEndian.Uint16(b[n-2 : n]))
switch et {
case EtherTypeServiceVLAN, EtherTypeVLAN:
// VLAN type is hinted for further parsing. An index is returned which
// indicates how many bytes were consumed by VLAN tags.
nn, err := f.unmarshalVLANs(et, b[n:])
if err != nil {
return err
}
n += nn
default:
// No VLANs detected.
f.EtherType = et
}
// Allocate single byte slice to store destination and source hardware
// addresses, and payload
bb := make([]byte, 6+6+len(b[n:]))
copy(bb[0:6], b[0:6])
f.Destination = bb[0:6]
copy(bb[6:12], b[6:12])
f.Source = bb[6:12]
// There used to be a minimum payload length restriction here, but as
// long as two hardware addresses and an EtherType are present, it
// doesn't really matter what is contained in the payload. We will
// follow the "robustness principle".
copy(bb[12:], b[n:])
f.Payload = bb[12:]
return nil
}
// UnmarshalFCS computes the IEEE CRC32 frame check sequence of a Frame,
// verifies it against the checksum present in the byte slice, and finally,
// unmarshals a byte slice into a Frame.
//
// Most users should use UnmarshalBinary instead. UnmarshalFCS is provided as
// a convenience for rare occasions when the operating system cannot
// automatically verify a frame check sequence for an Ethernet frame.
func (f *Frame) UnmarshalFCS(b []byte) error {
// Must contain enough data for FCS, to avoid panics
if len(b) < 4 {
return io.ErrUnexpectedEOF
}
// Verify checksum in slice versus newly computed checksum
want := binary.BigEndian.Uint32(b[len(b)-4:])
got := crc32.ChecksumIEEE(b[0 : len(b)-4])
if want != got {
return ErrInvalidFCS
}
return f.UnmarshalBinary(b[0 : len(b)-4])
}
// length calculates the number of bytes required to store a Frame.
func (f *Frame) length() int {
// If payload is less than the required minimum length, we zero-pad up to
// the required minimum length
pl := len(f.Payload)
if pl < minPayload {
pl = minPayload
}
// Add additional length if VLAN tags are needed.
var vlanLen int
switch {
case f.ServiceVLAN != nil && f.VLAN != nil:
vlanLen = 8
case f.VLAN != nil:
vlanLen = 4
}
// 6 bytes: destination hardware address
// 6 bytes: source hardware address
// N bytes: VLAN tags (if present)
// 2 bytes: EtherType
// N bytes: payload length (may be padded)
return 6 + 6 + vlanLen + 2 + pl
}
// unmarshalVLANs unmarshals S/C-VLAN tags. It is assumed that tpid
// is a valid S/C-VLAN TPID.
func (f *Frame) unmarshalVLANs(tpid EtherType, b []byte) (int, error) {
// 4 or more bytes must remain for valid S/C-VLAN tag and EtherType.
if len(b) < 4 {
return 0, io.ErrUnexpectedEOF
}
// Track how many bytes are consumed by VLAN tags.
var n int
switch tpid {
case EtherTypeServiceVLAN:
vlan := new(VLAN)
if err := vlan.UnmarshalBinary(b[n : n+2]); err != nil {
return 0, err
}
f.ServiceVLAN = vlan
// Assume that a C-VLAN immediately trails an S-VLAN.
if EtherType(binary.BigEndian.Uint16(b[n+2:n+4])) != EtherTypeVLAN {
return 0, ErrInvalidVLAN
}
// 4 or more bytes must remain for valid C-VLAN tag and EtherType.
n += 4
if len(b[n:]) < 4 {
return 0, io.ErrUnexpectedEOF
}
// Continue to parse the C-VLAN.
fallthrough
case EtherTypeVLAN:
vlan := new(VLAN)
if err := vlan.UnmarshalBinary(b[n : n+2]); err != nil {
return 0, err
}
f.VLAN = vlan
f.EtherType = EtherType(binary.BigEndian.Uint16(b[n+2 : n+4]))
n += 4
default:
panic(fmt.Sprintf("unknown VLAN TPID: %04x", tpid))
}
return n, nil
}
|