1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158
|
package ndp
import (
"bytes"
"crypto/rand"
"crypto/subtle"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"io"
"math"
"net"
"net/netip"
"net/url"
"strings"
"time"
"unicode"
"golang.org/x/net/idna"
)
// Infinity indicates that a prefix is valid for an infinite amount of time,
// unless a new, finite, value is received in a subsequent router advertisement.
const Infinity = time.Duration(0xffffffff) * time.Second
const (
// Length of a link-layer address for Ethernet networks.
ethAddrLen = 6
// The assumed NDP option length (in units of 8 bytes) for fixed length options.
llaOptLen = 1
piOptLen = 4
mtuOptLen = 1
// Type values for each type of valid Option.
optSourceLLA = 1
optTargetLLA = 2
optPrefixInformation = 3
optMTU = 5
optNonce = 14
optRouteInformation = 24
optRDNSS = 25
optRAFlagsExtension = 26
optDNSSL = 31
optCaptivePortal = 37
optPREF64 = 38
)
// A Direction specifies the direction of a LinkLayerAddress Option as a source
// or target.
type Direction int
// Possible Direction values.
const (
Source Direction = optSourceLLA
Target Direction = optTargetLLA
)
// An Option is a Neighbor Discovery Protocol option.
type Option interface {
// Code specifies the NDP option code for an Option.
Code() uint8
// "Code" as a method name isn't actually accurate because NDP options
// also refer to that field as "Type", but we want to avoid confusion
// with Message implementations which already use Type.
// Called when dealing with a Message's Options.
marshal() ([]byte, error)
unmarshal(b []byte) error
}
var _ Option = &LinkLayerAddress{}
// A LinkLayerAddress is a Source or Target Link-Layer Address option, as
// described in RFC 4861, Section 4.6.1.
type LinkLayerAddress struct {
Direction Direction
Addr net.HardwareAddr
}
// TODO(mdlayher): deal with non-ethernet links and variable option length?
// Code implements Option.
func (lla *LinkLayerAddress) Code() byte { return byte(lla.Direction) }
func (lla *LinkLayerAddress) marshal() ([]byte, error) {
if d := lla.Direction; d != Source && d != Target {
return nil, fmt.Errorf("ndp: invalid link-layer address direction: %d", d)
}
if len(lla.Addr) != ethAddrLen {
return nil, fmt.Errorf("ndp: invalid link-layer address: %q", lla.Addr)
}
raw := &RawOption{
Type: lla.Code(),
Length: llaOptLen,
Value: lla.Addr,
}
return raw.marshal()
}
func (lla *LinkLayerAddress) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
d := Direction(raw.Type)
if d != Source && d != Target {
return fmt.Errorf("ndp: invalid link-layer address direction: %d", d)
}
if l := raw.Length; l != llaOptLen {
return fmt.Errorf("ndp: unexpected link-layer address option length: %d", l)
}
*lla = LinkLayerAddress{
Direction: d,
Addr: net.HardwareAddr(raw.Value),
}
return nil
}
var _ Option = new(MTU)
// An MTU is an MTU option, as described in RFC 4861, Section 4.6.1.
type MTU struct {
MTU uint32
}
// NewMTU creates an MTU Option from an MTU value.
func NewMTU(mtu uint32) *MTU {
return &MTU{MTU: mtu}
}
// Code implements Option.
func (*MTU) Code() byte { return optMTU }
func (m *MTU) marshal() ([]byte, error) {
raw := &RawOption{
Type: m.Code(),
Length: mtuOptLen,
// 2 reserved bytes, 4 for MTU.
Value: make([]byte, 6),
}
binary.BigEndian.PutUint32(raw.Value[2:6], uint32(m.MTU))
return raw.marshal()
}
func (m *MTU) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
*m = MTU{MTU: binary.BigEndian.Uint32(raw.Value[2:6])}
return nil
}
var _ Option = &PrefixInformation{}
// A PrefixInformation is a a Prefix Information option, as described in RFC 4861, Section 4.6.1.
type PrefixInformation struct {
PrefixLength uint8
OnLink bool
AutonomousAddressConfiguration bool
ValidLifetime time.Duration
PreferredLifetime time.Duration
Prefix netip.Addr
}
// Code implements Option.
func (*PrefixInformation) Code() byte { return optPrefixInformation }
func (pi *PrefixInformation) marshal() ([]byte, error) {
// Per the RFC:
// "The bits in the prefix after the prefix length are reserved and MUST
// be initialized to zero by the sender and ignored by the receiver."
//
// Therefore, any prefix, when masked with its specified length, should be
// identical to the prefix itself for it to be valid.
p := netip.PrefixFrom(pi.Prefix, int(pi.PrefixLength))
if masked := p.Masked(); pi.Prefix != masked.Addr() {
return nil, fmt.Errorf("ndp: invalid prefix information: %s/%d",
pi.Prefix, pi.PrefixLength)
}
raw := &RawOption{
Type: pi.Code(),
Length: piOptLen,
// 30 bytes for PrefixInformation body.
Value: make([]byte, 30),
}
raw.Value[0] = pi.PrefixLength
if pi.OnLink {
raw.Value[1] |= (1 << 7)
}
if pi.AutonomousAddressConfiguration {
raw.Value[1] |= (1 << 6)
}
valid := pi.ValidLifetime.Seconds()
binary.BigEndian.PutUint32(raw.Value[2:6], uint32(valid))
pref := pi.PreferredLifetime.Seconds()
binary.BigEndian.PutUint32(raw.Value[6:10], uint32(pref))
// 4 bytes reserved.
copy(raw.Value[14:30], pi.Prefix.AsSlice())
return raw.marshal()
}
func (pi *PrefixInformation) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// Guard against incorrect option length.
if raw.Length != piOptLen {
return io.ErrUnexpectedEOF
}
var (
oFlag = (raw.Value[1] & 0x80) != 0
aFlag = (raw.Value[1] & 0x40) != 0
valid = time.Duration(binary.BigEndian.Uint32(raw.Value[2:6])) * time.Second
preferred = time.Duration(binary.BigEndian.Uint32(raw.Value[6:10])) * time.Second
)
// Skip to address.
addr := raw.Value[14:30]
ip, ok := netip.AddrFromSlice(addr)
if !ok {
panicf("ndp: invalid IPv6 address slice: %v", addr)
}
if err := checkIPv6(ip); err != nil {
return err
}
// Per the RFC, bits in prefix past prefix length are ignored by the
// receiver.
pl := raw.Value[0]
p := netip.PrefixFrom(ip, int(pl)).Masked()
*pi = PrefixInformation{
PrefixLength: pl,
OnLink: oFlag,
AutonomousAddressConfiguration: aFlag,
ValidLifetime: valid,
PreferredLifetime: preferred,
Prefix: p.Addr(),
}
return nil
}
var _ Option = &RouteInformation{}
// A RouteInformation is a Route Information option, as described in RFC 4191,
// Section 2.3.
type RouteInformation struct {
PrefixLength uint8
Preference Preference
RouteLifetime time.Duration
Prefix netip.Addr
}
// Code implements Option.
func (*RouteInformation) Code() byte { return optRouteInformation }
func (ri *RouteInformation) marshal() ([]byte, error) {
// Per the RFC:
// "The bits in the prefix after the prefix length are reserved and MUST
// be initialized to zero by the sender and ignored by the receiver."
//
// Therefore, any prefix, when masked with its specified length, should be
// identical to the prefix itself for it to be valid.
err := fmt.Errorf("ndp: invalid route information: %s/%d", ri.Prefix, ri.PrefixLength)
p := netip.PrefixFrom(ri.Prefix, int(ri.PrefixLength))
if masked := p.Masked(); ri.Prefix != masked.Addr() {
return nil, err
}
// Depending on the length of the prefix, we can add fewer bytes to the
// option.
var iplen int
switch {
case ri.PrefixLength == 0:
iplen = 0
case ri.PrefixLength > 0 && ri.PrefixLength < 65:
iplen = 1
case ri.PrefixLength > 64 && ri.PrefixLength < 129:
iplen = 2
default:
// Invalid IPv6 prefix.
return nil, err
}
raw := &RawOption{
Type: ri.Code(),
Length: uint8(iplen) + 1,
// Prefix length, preference, lifetime, and prefix body as computed by
// using iplen.
Value: make([]byte, 1+1+4+(iplen*8)),
}
raw.Value[0] = ri.PrefixLength
// Adjacent bits are reserved.
if prf := uint8(ri.Preference); prf != 0 {
raw.Value[1] |= (prf << 3)
}
lt := ri.RouteLifetime.Seconds()
binary.BigEndian.PutUint32(raw.Value[2:6], uint32(lt))
copy(raw.Value[6:], ri.Prefix.AsSlice())
return raw.marshal()
}
func (ri *RouteInformation) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// Verify the option's length against prefix length using the rules defined
// in the RFC.
l := raw.Value[0]
rerr := fmt.Errorf("ndp: invalid route information for /%d prefix", l)
switch {
case l == 0:
if raw.Length < 1 || raw.Length > 3 {
return rerr
}
case l > 0 && l < 65:
// Some devices will use length 3 anyway for a route that fits in /64.
if raw.Length != 2 && raw.Length != 3 {
return rerr
}
case l > 64 && l < 129:
if raw.Length != 3 {
return rerr
}
default:
// Invalid IPv6 prefix.
return rerr
}
// Unpack preference (with adjacent reserved bits) and lifetime values.
var (
pref = Preference((raw.Value[1] & 0x18) >> 3)
lt = time.Duration(binary.BigEndian.Uint32(raw.Value[2:6])) * time.Second
)
if err := checkPreference(pref); err != nil {
return err
}
// Take up to the specified number of IP bytes into the prefix.
var (
addr [16]byte
buf = raw.Value[6 : 6+(l/8)]
)
copy(addr[:], buf)
*ri = RouteInformation{
PrefixLength: l,
Preference: pref,
RouteLifetime: lt,
Prefix: netip.AddrFrom16(addr),
}
return nil
}
// A RecursiveDNSServer is a Recursive DNS Server option, as described in
// RFC 8106, Section 5.1.
type RecursiveDNSServer struct {
Lifetime time.Duration
Servers []netip.Addr
}
// Code implements Option.
func (*RecursiveDNSServer) Code() byte { return optRDNSS }
// Offsets for the RDNSS option.
const (
rdnssLifetimeOff = 2
rdnssServersOff = 6
)
var (
errRDNSSNoServers = errors.New("ndp: recursive DNS server option requires at least one server")
errRDNSSBadServer = errors.New("ndp: recursive DNS server option has malformed IPv6 address")
)
func (r *RecursiveDNSServer) marshal() ([]byte, error) {
slen := len(r.Servers)
if slen == 0 {
return nil, errRDNSSNoServers
}
raw := &RawOption{
Type: r.Code(),
// Always have one length unit to start, and then each IPv6 address
// occupies two length units.
Length: 1 + uint8((slen * 2)),
// Allocate enough space for all data.
Value: make([]byte, rdnssServersOff+(slen*net.IPv6len)),
}
binary.BigEndian.PutUint32(
raw.Value[rdnssLifetimeOff:rdnssServersOff],
uint32(r.Lifetime.Seconds()),
)
for i := 0; i < len(r.Servers); i++ {
// Determine the start and end byte offsets for each address,
// effectively iterating 16 bytes at a time to insert an address.
var (
start = rdnssServersOff + (i * net.IPv6len)
end = rdnssServersOff + net.IPv6len + (i * net.IPv6len)
)
copy(raw.Value[start:end], r.Servers[i].AsSlice())
}
return raw.marshal()
}
func (r *RecursiveDNSServer) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// Skip 2 reserved bytes to get lifetime.
lt := time.Duration(binary.BigEndian.Uint32(
raw.Value[rdnssLifetimeOff:rdnssServersOff])) * time.Second
// Determine the number of DNS servers specified using the method described
// in the RFC. Remember, length is specified in units of 8 octets.
//
// "That is, the number of addresses is equal to (Length - 1) / 2."
//
// Make sure at least one server is present, and that the IPv6 addresses are
// the expected 16 byte length.
dividend := (int(raw.Length) - 1)
if dividend%2 != 0 {
return errRDNSSBadServer
}
count := dividend / 2
if count == 0 {
return errRDNSSNoServers
}
servers := make([]netip.Addr, 0, count)
for i := 0; i < count; i++ {
// Determine the start and end byte offsets for each address,
// effectively iterating 16 bytes at a time to fetch an address.
var (
start = rdnssServersOff + (i * net.IPv6len)
end = rdnssServersOff + net.IPv6len + (i * net.IPv6len)
)
s, ok := netip.AddrFromSlice(raw.Value[start:end])
if !ok {
return errRDNSSBadServer
}
servers = append(servers, s)
}
*r = RecursiveDNSServer{
Lifetime: lt,
Servers: servers,
}
return nil
}
// A DNSSearchList is a DNS search list option, as described in
// RFC 8106, Section 5.2.
type DNSSearchList struct {
Lifetime time.Duration
DomainNames []string
}
// Code implements Option.
func (*DNSSearchList) Code() byte { return optDNSSL }
// Offsets for the RDNSS option.
const (
dnsslLifetimeOff = 2
dnsslDomainsOff = 6
)
var (
errDNSSLBadDomains = errors.New("ndp: DNS search list option has malformed domain names")
errDNSSLNoDomains = errors.New("ndp: DNS search list option requires at least one domain name")
)
func (d *DNSSearchList) marshal() ([]byte, error) {
if len(d.DomainNames) == 0 {
return nil, errDNSSLNoDomains
}
// Make enough room for reserved bytes and lifetime.
value := make([]byte, dnsslDomainsOff)
binary.BigEndian.PutUint32(
value[dnsslLifetimeOff:dnsslDomainsOff],
uint32(d.Lifetime.Seconds()),
)
// Attach each label component of a domain name with a one byte length prefix
// and a null terminator between full domain names, using the algorithm from:
// https://tools.ietf.org/html/rfc1035#section-3.1.
for _, dn := range d.DomainNames {
// All unicode names must be converted to punycode.
dn, err := idna.ToASCII(dn)
if err != nil {
return nil, errDNSSLBadDomains
}
for _, label := range strings.Split(dn, ".") {
// Label must be convertable to valid Punycode.
if !isASCII(label) {
return nil, errDNSSLBadDomains
}
value = append(value, byte(len(label)))
value = append(value, label...)
}
value = append(value, 0)
}
// Pad null bytes into value, so that when combined with type and length,
// the entire buffer length is divisible by 8 bytes for proper NDP option
// length.
if r := (len(value) + 2) % 8; r != 0 {
value = append(value, bytes.Repeat([]byte{0x00}, 8-r)...)
}
raw := &RawOption{
Type: d.Code(),
// Always have one length unit to start, and then calculate the length
// needed for value.
Length: uint8((len(value) + 2) / 8),
Value: value,
}
return raw.marshal()
}
func (d *DNSSearchList) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// Skip 2 reserved bytes to get lifetime.
lt := time.Duration(binary.BigEndian.Uint32(
raw.Value[dnsslLifetimeOff:dnsslDomainsOff])) * time.Second
// This block implements the domain name space parsing algorithm from:
// https://tools.ietf.org/html/rfc1035#section-3.1.
//
// A domain is comprised of a sequence of labels, which are accumulated and
// then separated by periods later on.
var domains []string
var labels []string
for i := dnsslDomainsOff; ; {
if len(raw.Value[i:]) < 2 {
return errDNSSLBadDomains
}
// Parse the length of the upcoming label.
length := int(raw.Value[i])
if length >= len(raw.Value[i:])-1 {
// Length out of range.
return errDNSSLBadDomains
}
if length == 0 {
// No more labels.
break
}
i++
// Parse the label string and ensure it is ASCII, and that it doesn't
// contain invalid characters.
label := string(raw.Value[i : i+length])
if !isASCII(label) {
return errDNSSLBadDomains
}
// TODO(mdlayher): much smarter validation.
if label == "" || strings.Contains(label, ".") || strings.Contains(label, " ") {
return errDNSSLBadDomains
}
// Verify that the Punycode label decodes to something sane.
label, err := idna.ToUnicode(label)
if err != nil {
return errDNSSLBadDomains
}
// TODO(mdlayher): much smarter validation.
if label == "" || hasUnicodeReplacement(label) || strings.Contains(label, ".") || strings.Contains(label, " ") {
return errDNSSLBadDomains
}
labels = append(labels, label)
i += length
// If we've reached a null byte, join labels into a domain name and
// empty the label stack for reuse.
if raw.Value[i] == 0 {
i++
domain, err := idna.ToUnicode(strings.Join(labels, "."))
if err != nil {
return errDNSSLBadDomains
}
domains = append(domains, domain)
labels = []string{}
// Have we reached the end of the value slice?
if len(raw.Value[i:]) == 0 || (len(raw.Value[i:]) == 1 && raw.Value[i] == 0) {
// No more non-padding bytes, no more labels.
break
}
}
}
// Must have found at least one domain.
if len(domains) == 0 {
return errDNSSLNoDomains
}
*d = DNSSearchList{
Lifetime: lt,
DomainNames: domains,
}
return nil
}
// Unrestricted is the IANA-assigned URI for a network with no captive portal
// restrictions, as specified in RFC 8910, Section 2.
const Unrestricted = "urn:ietf:params:capport:unrestricted"
// A CaptivePortal is a Captive-Portal option, as described in RFC 8910, Section
// 2.3.
type CaptivePortal struct {
URI string
}
// NewCaptivePortal produces a CaptivePortal Option for the input URI string. As
// a special case, if uri is empty, Unrestricted is used as the CaptivePortal
// OptionURI.
//
// If uri is an IP address literal, an error is returned. Per RFC 8910, uri
// "SHOULD NOT" be an IP address, but there are circumstances where this
// behavior may be useful. In that case, the caller can bypass NewCaptivePortal
// and construct a CaptivePortal Option directly.
func NewCaptivePortal(uri string) (*CaptivePortal, error) {
if uri == "" {
return &CaptivePortal{URI: Unrestricted}, nil
}
// Try to comply with the max limit for DHCPv4.
if len(uri) > 255 {
return nil, errors.New("ndp: captive portal option URI is too long")
}
// TODO(mdlayher): a URN is almost a URL, but investigate compliance with
// https://datatracker.ietf.org/doc/html/rfc8141. In particular there are
// some tricky rules around case-sensitivity.
urn, err := url.Parse(uri)
if err != nil {
return nil, err
}
// "The URI SHOULD NOT contain an IP address literal."
//
// Since this is a constructor and there's nothing stopping the user from
// manually creating this string if they so choose, we'll return an error
// IP addresses. This includes bare IP addresses or IP addresses with some
// kind of path appended.
for _, s := range strings.Split(urn.Path, "/") {
if ip, err := netip.ParseAddr(s); err == nil {
return nil, fmt.Errorf("ndp: captive portal option URIs should not contain IP addresses: %s", ip)
}
}
return &CaptivePortal{URI: urn.String()}, nil
}
// Code implements Option.
func (*CaptivePortal) Code() byte { return optCaptivePortal }
func (cp *CaptivePortal) marshal() ([]byte, error) {
if len(cp.URI) == 0 {
return nil, errors.New("ndp: captive portal option requires a non-empty URI")
}
// Pad up to next unit of 8 bytes including 2 bytes for code, length, and
// bytes for the URI string. Extra bytes will be null.
l := len(cp.URI)
if r := (l + 2) % 8; r != 0 {
l += 8 - r
}
value := make([]byte, l)
copy(value, []byte(cp.URI))
raw := &RawOption{
Type: cp.Code(),
Length: (uint8(l) + 2) / 8,
Value: value,
}
return raw.marshal()
}
func (cp *CaptivePortal) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// Don't allow a null URI.
if len(raw.Value) == 0 || raw.Value[0] == 0x00 {
return errors.New("ndp: captive portal URI is null")
}
// Find any trailing null bytes and trim them away before setting the URI.
i := bytes.Index(raw.Value, []byte{0x00})
if i == -1 {
i = len(raw.Value)
}
// Our constructor does validation of URIs, but we treat the URI as opaque
// for parsing, since we likely have to interop with other implementations.
*cp = CaptivePortal{URI: string(raw.Value[:i])}
return nil
}
// PREF64 is a PREF64 option, as described in RFC 8781, Section 4. The prefix
// must have a prefix length of 96, 64, 56, 40, or 32. The lifetime is used to
// indicate to clients how long the PREF64 prefix is valid for. A lifetime of 0
// indicates the prefix is no longer valid. If unsure, refer to RFC 8781
// Section 4.1 for how to calculate an appropriate lifetime.
type PREF64 struct {
Lifetime time.Duration
Prefix netip.Prefix
}
func (p *PREF64) Code() byte { return optPREF64 }
func (p *PREF64) marshal() ([]byte, error) {
var plc uint8
switch p.Prefix.Bits() {
case 96:
plc = 0
case 64:
plc = 1
case 56:
plc = 2
case 48:
plc = 3
case 40:
plc = 4
case 32:
plc = 5
default:
return nil, errors.New("ndp: invalid pref64 prefix size")
}
scaledLifetime := uint16(math.Round(p.Lifetime.Seconds() / 8))
// The scaled lifetime must be less than the maximum of 8191.
if scaledLifetime > 8191 {
return nil, errors.New("ndp: pref64 scaled lifetime is too large")
}
value := []byte{}
// The scaled lifetime and PLC values live within the same 16-bit field.
// Here we move the scaled lifetime to the left-most 13 bits and place the
// PLC at the last 3 bits of the 16-bit field.
value = binary.BigEndian.AppendUint16(
value,
(scaledLifetime<<3&(0xffff^0b111))|uint16(plc&0b111),
)
allPrefixBits := p.Prefix.Masked().Addr().As16()
optionPrefixBits := allPrefixBits[:96/8]
value = append(value, optionPrefixBits...)
raw := &RawOption{
Type: p.Code(),
Length: (uint8(len(value)) + 2) / 8,
Value: value,
}
return raw.marshal()
}
func (p *PREF64) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
if raw.Type != optPREF64 {
return errors.New("ndp: invalid pref64 type")
}
if len(raw.Value) != (96/8)+2 {
return errors.New("ndp: invalid pref64 message length")
}
lifetimeAndPlc := binary.BigEndian.Uint16(raw.Value[:2])
plc := uint8(lifetimeAndPlc & 0b111)
var prefixSize int
switch plc {
case 0:
prefixSize = 96
case 1:
prefixSize = 64
case 2:
prefixSize = 56
case 3:
prefixSize = 48
case 4:
prefixSize = 40
case 5:
prefixSize = 32
default:
return errors.New("ndp: invalid pref64 prefix length code")
}
addr := [16]byte{}
copy(addr[:], raw.Value[2:])
prefix, err := netip.AddrFrom16(addr).Prefix(int(prefixSize))
if err != nil {
return err
}
scaledLifetime := (lifetimeAndPlc & (0xffff ^ 0b111)) >> 3
lifetime := time.Duration(scaledLifetime) * 8 * time.Second
*p = PREF64{
Lifetime: lifetime,
Prefix: prefix,
}
return nil
}
// A RAFlagsExtension is a Router Advertisement Flags Extension (or Expansion)
// option, as described in RFC 5175, Section 4.
type RAFlagsExtension struct {
Flags RAFlags
}
// RAFlags is a bitmask of Router Advertisement flags contained within an
// RAFlagsExtension.
type RAFlags []byte
// Code implements Option.
func (*RAFlagsExtension) Code() byte { return optRAFlagsExtension }
func (ra *RAFlagsExtension) marshal() ([]byte, error) {
// "MUST NOT be added to a Router Advertisement message if no flags in the
// option are set."
//
// TODO(mdlayher): replace with slices.IndexFunc when we raise the minimum
// Go version.
var found bool
for _, b := range ra.Flags {
if b != 0x00 {
found = true
break
}
}
if !found {
return nil, errors.New("ndp: RA flags extension requires one or more flags to be set")
}
// Enforce the option size matches the next unit of 8 bytes including 2
// bytes for code and length.
l := len(ra.Flags)
if r := (l + 2) % 8; r != 0 {
return nil, errors.New("ndp: RA flags extension length is invalid")
}
value := make([]byte, l)
copy(value, ra.Flags)
raw := &RawOption{
Type: ra.Code(),
Length: (uint8(l) + 2) / 8,
Value: value,
}
return raw.marshal()
}
func (ra *RAFlagsExtension) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// Don't allow short bytes.
if len(raw.Value) < 6 {
return errors.New("ndp: RA Flags Extension too short")
}
// raw already made a copy.
ra.Flags = raw.Value
return nil
}
// A Nonce is a Nonce option, as described in RFC 3971, Section 5.3.2.
type Nonce struct {
b []byte
}
// NewNonce creates a Nonce option with an opaque random value.
func NewNonce() *Nonce {
// Minimum is 6 bytes, and this is also the only value that the Linux kernel
// recognizes as of kernel 5.17.
const n = 6
b := make([]byte, n)
if _, err := rand.Read(b); err != nil {
panicf("ndp: failed to generate nonce bytes: %v", err)
}
return &Nonce{b: b}
}
// Equal reports whether n and x are the same nonce.
func (n *Nonce) Equal(x *Nonce) bool { return subtle.ConstantTimeCompare(n.b, x.b) == 1 }
// Code implements Option.
func (*Nonce) Code() byte { return optNonce }
// String returns the string representation of a Nonce.
func (n *Nonce) String() string { return hex.EncodeToString(n.b) }
func (n *Nonce) marshal() ([]byte, error) {
if len(n.b) == 0 {
return nil, errors.New("ndp: nonce option requires a non-empty nonce value")
}
// Enforce the nonce size matches the next unit of 8 bytes including 2 bytes
// for code and length.
l := len(n.b)
if r := (l + 2) % 8; r != 0 {
return nil, errors.New("ndp: nonce size is invalid")
}
value := make([]byte, l)
copy(value, n.b)
raw := &RawOption{
Type: n.Code(),
Length: (uint8(l) + 2) / 8,
Value: value,
}
return raw.marshal()
}
func (n *Nonce) unmarshal(b []byte) error {
raw := new(RawOption)
if err := raw.unmarshal(b); err != nil {
return err
}
// raw already made a copy.
n.b = raw.Value
return nil
}
var _ Option = &RawOption{}
// A RawOption is an Option in its raw and unprocessed format. Options which
// are not recognized by this package can be represented using a RawOption.
type RawOption struct {
Type uint8
Length uint8
Value []byte
}
// Code implements Option.
func (r *RawOption) Code() byte { return r.Type }
func (r *RawOption) marshal() ([]byte, error) {
// Length specified in units of 8 bytes, and the caller must provide
// an accurate length.
l := int(r.Length * 8)
if 1+1+len(r.Value) != l {
return nil, io.ErrUnexpectedEOF
}
b := make([]byte, r.Length*8)
b[0] = r.Type
b[1] = r.Length
copy(b[2:], r.Value)
return b, nil
}
func (r *RawOption) unmarshal(b []byte) error {
if len(b) < 2 {
return io.ErrUnexpectedEOF
}
r.Type = b[0]
r.Length = b[1]
// Exclude type and length fields from value's length.
l := int(r.Length*8) - 2
// Enforce a valid length value that matches the expected one.
if lb := len(b[2:]); l != lb {
return fmt.Errorf("ndp: option value byte length should be %d, but length is %d", l, lb)
}
r.Value = make([]byte, l)
copy(r.Value, b[2:])
return nil
}
// marshalOptions marshals a slice of Options into a single byte slice.
func marshalOptions(options []Option) ([]byte, error) {
var b []byte
for _, o := range options {
ob, err := o.marshal()
if err != nil {
return nil, err
}
b = append(b, ob...)
}
return b, nil
}
// parseOptions parses a slice of Options from a byte slice.
func parseOptions(b []byte) ([]Option, error) {
var options []Option
for i := 0; len(b[i:]) != 0; {
// Two bytes: option type and option length.
if len(b[i:]) < 2 {
return nil, io.ErrUnexpectedEOF
}
// Type processed as-is, but length is stored in units of 8 bytes,
// so expand it to the actual byte length.
t := b[i]
l := int(b[i+1]) * 8
// Verify that we won't advance beyond the end of the byte slice.
if l > len(b[i:]) {
return nil, io.ErrUnexpectedEOF
}
// Infer the option from its type value and use it for unmarshaling.
var o Option
switch t {
case optSourceLLA, optTargetLLA:
o = new(LinkLayerAddress)
case optMTU:
o = new(MTU)
case optPrefixInformation:
o = new(PrefixInformation)
case optRouteInformation:
o = new(RouteInformation)
case optRDNSS:
o = new(RecursiveDNSServer)
case optRAFlagsExtension:
o = new(RAFlagsExtension)
case optDNSSL:
o = new(DNSSearchList)
case optCaptivePortal:
o = new(CaptivePortal)
case optPREF64:
o = new(PREF64)
case optNonce:
o = new(Nonce)
default:
o = new(RawOption)
}
// Unmarshal at the current offset, up to the expected length.
if err := o.unmarshal(b[i : i+l]); err != nil {
return nil, err
}
// Advance to the next option's type field.
i += l
options = append(options, o)
}
return options, nil
}
// isASCII verifies that the contents of s are all ASCII characters.
func isASCII(s string) bool {
for _, c := range s {
if c > unicode.MaxASCII {
return false
}
}
return true
}
// hasUnicodeReplacement checks for the Unicode replacment character in s.
func hasUnicodeReplacement(s string) bool {
for _, c := range s {
if c == unicode.ReplacementChar {
return true
}
}
return false
}
|