1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157
|
package meilisearch
type (
TaskType string // TaskType is the type of a task
SortFacetType string // SortFacetType is type of facet sorting, alpha or count
TaskStatus string // TaskStatus is the status of a task.
ProximityPrecisionType string // ProximityPrecisionType accepts one of the ByWord or ByAttribute
MatchingStrategy string // MatchingStrategy one of the Last, All, Frequency
)
const (
// Last returns documents containing all the query terms first. If there are not enough results containing all
// query terms to meet the requested limit, Meilisearch will remove one query term at a time,
// starting from the end of the query.
Last MatchingStrategy = "last"
// All only returns documents that contain all query terms. Meilisearch will not match any more documents even
// if there aren't enough to meet the requested limit.
All MatchingStrategy = "all"
// Frequency returns documents containing all the query terms first. If there are not enough results containing
//all query terms to meet the requested limit, Meilisearch will remove one query term at a time, starting
//with the word that is the most frequent in the dataset. frequency effectively gives more weight to terms
//that appear less frequently in a set of results.
Frequency MatchingStrategy = "frequency"
)
const (
// ByWord calculate the precise distance between query terms. Higher precision, but may lead to longer
// indexing time. This is the default setting
ByWord ProximityPrecisionType = "byWord"
// ByAttribute determine if multiple query terms are present in the same attribute.
// Lower precision, but shorter indexing time
ByAttribute ProximityPrecisionType = "byAttribute"
)
const (
// TaskStatusUnknown is the default TaskStatus, should not exist
TaskStatusUnknown TaskStatus = "unknown"
// TaskStatusEnqueued the task request has been received and will be processed soon
TaskStatusEnqueued TaskStatus = "enqueued"
// TaskStatusProcessing the task is being processed
TaskStatusProcessing TaskStatus = "processing"
// TaskStatusSucceeded the task has been successfully processed
TaskStatusSucceeded TaskStatus = "succeeded"
// TaskStatusFailed a failure occurred when processing the task, no changes were made to the database
TaskStatusFailed TaskStatus = "failed"
// TaskStatusCanceled the task was canceled
TaskStatusCanceled TaskStatus = "canceled"
)
const (
SortFacetTypeAlpha SortFacetType = "alpha"
SortFacetTypeCount SortFacetType = "count"
)
const (
// TaskTypeIndexCreation represents an index creation
TaskTypeIndexCreation TaskType = "indexCreation"
// TaskTypeIndexUpdate represents an index update
TaskTypeIndexUpdate TaskType = "indexUpdate"
// TaskTypeIndexDeletion represents an index deletion
TaskTypeIndexDeletion TaskType = "indexDeletion"
// TaskTypeIndexSwap represents an index swap
TaskTypeIndexSwap TaskType = "indexSwap"
// TaskTypeDocumentAdditionOrUpdate represents a document addition or update in an index
TaskTypeDocumentAdditionOrUpdate TaskType = "documentAdditionOrUpdate"
// TaskTypeDocumentDeletion represents a document deletion from an index
TaskTypeDocumentDeletion TaskType = "documentDeletion"
// TaskTypeSettingsUpdate represents a settings update
TaskTypeSettingsUpdate TaskType = "settingsUpdate"
// TaskTypeDumpCreation represents a dump creation
TaskTypeDumpCreation TaskType = "dumpCreation"
// TaskTypeTaskCancelation represents a task cancelation
TaskTypeTaskCancelation TaskType = "taskCancelation"
// TaskTypeTaskDeletion represents a task deletion
TaskTypeTaskDeletion TaskType = "taskDeletion"
// TaskTypeSnapshotCreation represents a snapshot creation
TaskTypeSnapshotCreation TaskType = "snapshotCreation"
// TaskTypeExport represents a task exportation
TaskTypeExport TaskType = "export"
)
type (
ContentEncoding string
EncodingCompressionLevel int
)
const (
GzipEncoding ContentEncoding = "gzip"
DeflateEncoding ContentEncoding = "deflate"
BrotliEncoding ContentEncoding = "br"
NoCompression EncodingCompressionLevel = 0
BestSpeed EncodingCompressionLevel = 1
BestCompression EncodingCompressionLevel = 9
DefaultCompression EncodingCompressionLevel = -1
HuffmanOnlyCompression EncodingCompressionLevel = -2
ConstantCompression EncodingCompressionLevel = -2
StatelessCompression EncodingCompressionLevel = -3
)
func (c ContentEncoding) String() string { return string(c) }
func (c ContentEncoding) IsZero() bool { return c == "" }
func (c EncodingCompressionLevel) Int() int { return int(c) }
// EmbedderSource The source corresponds to a service that generates embeddings from your documents.
type EmbedderSource string
const (
OpenaiEmbedderSource EmbedderSource = "openAi"
HuggingFaceEmbedderSource EmbedderSource = "huggingFace"
// RestEmbedderSource rest is a generic source compatible with any embeddings provider offering a REST API.
RestEmbedderSource EmbedderSource = "rest"
OllamaEmbedderSource EmbedderSource = "ollama"
// UserProvidedEmbedderSource Use userProvided when you want to generate embeddings manually. In this case,
// you must include vector data in your documents’ _vectors field. You must also generate
//vectors for search queries.
UserProvidedEmbedderSource EmbedderSource = "userProvided"
// CompositeEmbedderSource Choose composite to use one embedder during indexing time, and another embedder at search time.
//Must be used together with indexingEmbedder and searchEmbedder.
CompositeEmbedderSource EmbedderSource = "composite"
)
// ChatSource The source corresponds to a service that generates chat completions from your messages.
type ChatSource string
const (
OpenaiChatSource ChatSource = "openAi"
AzureOpenAiChatSource ChatSource = "azureOpenAi"
MistralChatSource ChatSource = "mistral"
GeminiChatSource ChatSource = "gemini"
VLlmChatSource ChatSource = "vLlm"
)
// EmbedderPooling Configure how Meilisearch should merge individual tokens into a single embedding.
//
// pooling is optional for embedders with the huggingFace source.
type EmbedderPooling string
const (
// UseModelEmbedderPooling Meilisearch will fetch the pooling method from the model configuration. Default value for new embedders
UseModelEmbedderPooling EmbedderPooling = "useModel"
// ForceMeanEmbedderPooling always use mean pooling. Default value for embedders created in Meilisearch <=v1.13
ForceMeanEmbedderPooling EmbedderPooling = "forceMean"
// ForceClsEmbedderPooling always use CLS pooling
ForceClsEmbedderPooling EmbedderPooling = "forceCls"
)
// ChatRole The role of a message in a chat conversation.
type ChatRole string
const (
ChatRoleUser ChatRole = "user"
ChatRoleAssistant ChatRole = "assistant"
ChatRoleSystem ChatRole = "system"
)
|