File: signer.go

package info (click to toggle)
golang-github-mendersoftware-mender-artifact 3.9.0%2Bds1-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, experimental
  • size: 4,136 kB
  • sloc: makefile: 128; sh: 128
file content (304 lines) | stat: -rw-r--r-- 8,738 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
// Copyright 2021 Northern.tech AS
//
//    Licensed under the Apache License, Version 2.0 (the "License");
//    you may not use this file except in compliance with the License.
//    You may obtain a copy of the License at
//
//        http://www.apache.org/licenses/LICENSE-2.0
//
//    Unless required by applicable law or agreed to in writing, software
//    distributed under the License is distributed on an "AS IS" BASIS,
//    WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
//    See the License for the specific language governing permissions and
//    limitations under the License.

package artifact

import (
	"crypto"
	"crypto/ecdsa"
	"crypto/rand"
	"crypto/rsa"
	"crypto/x509"
	"encoding/base64"
	"encoding/pem"
	"math/big"

	"github.com/minio/sha256-simd"
	"github.com/pkg/errors"
)

// Signer is returning a signature of the provided message.
type Signer interface {
	Sign(message []byte) ([]byte, error)
}

// Verifier is verifying if provided message and signature matches.
type Verifier interface {
	Verify(message, sig []byte) error
}

// Crypto is an interface each specific signature algorithm must implement
// in order to be used with PKISigner.
type Crypto interface {
	Sign(message []byte, key interface{}) ([]byte, error)
	Verify(message, sig []byte, key interface{}) error
}

//
// RSA Crypto interface implementation
//
type RSA struct{}

func (r *RSA) Sign(message []byte, key interface{}) ([]byte, error) {
	var rsaKey *rsa.PrivateKey
	var ok bool

	// validate key
	if rsaKey, ok = key.(*rsa.PrivateKey); !ok {
		return nil, errors.New("signer: invalid private key")
	}

	h := sha256.Sum256(message)
	return rsa.SignPKCS1v15(rand.Reader, rsaKey, crypto.SHA256, h[:])
}

func (r *RSA) Verify(message, sig []byte, key interface{}) error {
	var rsaKey *rsa.PublicKey
	var ok bool

	// validate key
	if rsaKey, ok = key.(*rsa.PublicKey); !ok {
		return errors.New("signer: invalid rsa public key")
	}

	h := sha256.Sum256(message)
	return rsa.VerifyPKCS1v15(rsaKey, crypto.SHA256, h[:], sig)
}

//
// ECDSA Crypto interface implementation
//
const ecdsa256curveBits = 256
const ecdsa256keySize = 32

type ECDSA256 struct{}

func (e *ECDSA256) Sign(message []byte, key interface{}) ([]byte, error) {
	var ecdsaKey *ecdsa.PrivateKey
	var ok bool

	// validate key
	if ecdsaKey, ok = key.(*ecdsa.PrivateKey); !ok {
		return nil, errors.New("signer: invalid private key")
	}

	// calculate the hash of the message to be signed
	h := sha256.Sum256(message)
	r, s, err := ecdsa.Sign(rand.Reader, ecdsaKey, h[:])
	if err != nil {
		return nil, errors.Wrap(err, "signer: error signing message")
	}
	// check if the size of the curve matches expected one;
	// for now we are supporting only 256 bit ecdsa
	if ecdsaKey.Curve.Params().BitSize != ecdsa256curveBits {
		return nil, errors.New("signer: invalid ecdsa curve size")
	}
	return MarshalECDSASignature(r, s)
}

func (e *ECDSA256) Verify(message, sig []byte, key interface{}) error {
	var ecdsaKey *ecdsa.PublicKey
	var ok bool

	// validate key
	if ecdsaKey, ok = key.(*ecdsa.PublicKey); !ok {
		return errors.New("signer: invalid ecdsa public key")
	}

	r, s, err := UnmarshalECDSASignature(sig)
	if err != nil {
		return err
	}

	h := sha256.Sum256(message)

	ok = ecdsa.Verify(ecdsaKey, h[:], r, s)
	if !ok {
		return errors.New("signer: verification failed")
	}
	return nil

}

func MarshalECDSASignature(r, s *big.Int) ([]byte, error) {
	// we serialize the r and s into one array where the first
	// half is the r and the other one s;
	// as both values are ecdsa256curveBits size we need
	// 2*ecdsa256keySize size slice to store both

	// MEN-1740 In some cases the size of the r and s can be different
	// than expected ecdsa256keySize. In this case we need to make sure
	// we are serializing those using correct offset. We can use leading
	// zeros easily as this has no impact on serializing and deserializing.
	rSize := len(r.Bytes())
	sSize := len(s.Bytes())
	if rSize > ecdsa256keySize || sSize > ecdsa256keySize {
		return nil,
			errors.Errorf("signer: invalid size of ecdsa keys: r: %d; s: %d",
				rSize, sSize)
	}

	// if the keys are shorter than expected we need to use correct offset
	// while serializing
	rOffset := ecdsa256keySize - rSize
	sOffset := ecdsa256keySize - sSize

	serialized := make([]byte, 2*ecdsa256keySize)
	copy(serialized[rOffset:], r.Bytes())
	copy(serialized[ecdsa256keySize+sOffset:], s.Bytes())

	return serialized, nil
}

func UnmarshalECDSASignature(sig []byte) (r, s *big.Int, e error) {
	// check if the size of the key matches provided one
	if len(sig) != 2*ecdsa256keySize {
		return nil, nil, errors.Errorf("signer: invalid ecdsa key size: %d", len(sig))
	}

	// get the signature; see corresponding `Sign` function for more details
	// about serialization
	r = big.NewInt(0).SetBytes(sig[:ecdsa256keySize])
	s = big.NewInt(0).SetBytes(sig[ecdsa256keySize:])
	return r, s, nil
}

type SigningMethod struct {
	// Key can be private or public depending if we want to sign or verify message
	Key    interface{}
	Public []byte
	Method Crypto
}

// PKISigner implements public-key encryption and supports X.509-encodded keys.
// For now both RSA and 256 bits ECDSA are supported.
type PKISigner struct {
	signMethod, verifyMethod *SigningMethod
}

func NewPKISigner(privateKey []byte) (*PKISigner, error) {
	if len(privateKey) == 0 {
		return nil, errors.New("signer: missing key")
	}
	signMethod, err := GetKeyAndSignMethod(privateKey)
	if err != nil {
		return nil, err
	}
	pub, err := x509.ParsePKIXPublicKey(signMethod.Public)
	if err != nil {
		return nil, errors.Wrap(err, "failed to parse encoded public key")
	}
	return &PKISigner{
		signMethod: signMethod,
		verifyMethod: &SigningMethod{
			Key:    pub,
			Method: signMethod.Method,
		},
	}, nil
}

func NewPKIVerifier(publicKey []byte) (*PKISigner, error) {
	if len(publicKey) == 0 {
		return nil, errors.New("signer: missing key")
	}
	verifyMethod, err := GetKeyAndVerifyMethod(publicKey)
	if err != nil {
		return nil, err
	}
	return &PKISigner{
		verifyMethod: verifyMethod,
	}, nil
}

func (s *PKISigner) Sign(message []byte) ([]byte, error) {
	if s.signMethod == nil {
		return nil, errors.New("signer: only verification allowed with this signer")
	}
	sig, err := s.signMethod.Method.Sign(message, s.signMethod.Key)
	if err != nil {
		return nil, errors.Wrap(err, "signer: error signing image")
	}
	enc := make([]byte, base64.StdEncoding.EncodedLen(len(sig)))
	base64.StdEncoding.Encode(enc, sig)
	return enc, nil
}

func (s *PKISigner) Verify(message, sig []byte) error {
	dec := make([]byte, base64.StdEncoding.DecodedLen(len(sig)))
	decLen, err := base64.StdEncoding.Decode(dec, sig)
	if err != nil {
		return errors.Wrap(err, "signer: error decoding signature")
	}

	if s.verifyMethod == nil {
		return errors.New("verifyMethod is nil")
	}
	if s.verifyMethod.Method == nil {
		return errors.New("verifyMethod.Method is nil")
	}

	return s.verifyMethod.Method.Verify(message, dec[:decLen], s.verifyMethod.Key)
}

func GetPublic(private []byte) ([]byte, error) {
	sm, err := GetKeyAndSignMethod(private)
	if err != nil {
		return nil, errors.Wrap(err, "signer: error parsing private key")
	}
	return sm.Public, nil
}

func GetKeyAndVerifyMethod(keyPEM []byte) (*SigningMethod, error) {
	block, _ := pem.Decode(keyPEM)
	if block == nil {
		return nil, errors.New("signer: failed to parse public key")
	}

	pub, err := x509.ParsePKIXPublicKey(block.Bytes)
	if err != nil {
		return nil, errors.Wrap(err, "failed to parse encoded public key")
	}
	switch pub := pub.(type) {
	case *rsa.PublicKey:
		return &SigningMethod{Key: pub, Method: new(RSA)}, nil
	case *ecdsa.PublicKey:
		return &SigningMethod{Key: pub, Method: new(ECDSA256)}, nil
	default:
		return nil, errors.Errorf("unsupported public key type: %v", pub)
	}
}

func GetKeyAndSignMethod(keyPEM []byte) (*SigningMethod, error) {
	block, _ := pem.Decode(keyPEM)
	if block == nil {
		return nil, errors.New("signer: failed to parse private key")
	}
	rsaKey, err := x509.ParsePKCS1PrivateKey(block.Bytes)
	if err == nil {
		pub, keyErr := x509.MarshalPKIXPublicKey(rsaKey.Public())
		if keyErr != nil {
			return nil, errors.Wrap(err, "signer: can not extract public RSA key")
		}
		return &SigningMethod{Key: rsaKey, Public: pub, Method: new(RSA)}, nil
	}
	ecdsaKey, err := x509.ParseECPrivateKey(block.Bytes)
	if err == nil {
		pub, keyErr := x509.MarshalPKIXPublicKey(ecdsaKey.Public())
		if keyErr != nil {
			return nil, errors.Wrap(err, "signer: can not extract public ECDSA key")
		}
		return &SigningMethod{Key: ecdsaKey, Public: pub, Method: new(ECDSA256)}, nil
	}
	return nil, errors.Wrap(err, "signer: unsupported private key type or error occured")
}