1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598
|
// Package lzx implements a decompressor for the the WIM variant of the
// LZX compression algorithm.
//
// The LZX algorithm is an earlier variant of LZX DELTA, which is documented
// at https://msdn.microsoft.com/en-us/library/cc483133(v=exchg.80).aspx.
package lzx
import (
"bytes"
"encoding/binary"
"errors"
"io"
)
const (
maincodecount = 496
maincodesplit = 256
lencodecount = 249
lenshift = 9
codemask = 0x1ff
tablebits = 9
tablesize = 1 << tablebits
maxBlockSize = 32768
windowSize = 32768
maxTreePathLen = 16
e8filesize = 12000000
maxe8offset = 0x3fffffff
verbatimBlock = 1
alignedOffsetBlock = 2
uncompressedBlock = 3
)
var footerBits = [...]byte{
0, 0, 0, 0, 1, 1, 2, 2,
3, 3, 4, 4, 5, 5, 6, 6,
7, 7, 8, 8, 9, 9, 10, 10,
11, 11, 12, 12, 13, 13, 14,
}
var basePosition = [...]uint16{
0, 1, 2, 3, 4, 6, 8, 12,
16, 24, 32, 48, 64, 96, 128, 192,
256, 384, 512, 768, 1024, 1536, 2048, 3072,
4096, 6144, 8192, 12288, 16384, 24576, 32768,
}
var (
errCorrupt = errors.New("LZX data corrupt")
)
// Reader is an interface used by the decompressor to access
// the input stream. If the provided io.Reader does not implement
// Reader, then a bufio.Reader is used.
type Reader interface {
io.Reader
io.ByteReader
}
type decompressor struct {
r io.Reader
err error
unaligned bool
nbits byte
c uint32
lru [3]uint16
uncompressed int
windowReader *bytes.Reader
mainlens [maincodecount]byte
lenlens [lencodecount]byte
window [windowSize]byte
b []byte
bv int
bo int
}
//go:noinline
func (f *decompressor) fail(err error) {
if f.err == nil {
f.err = err
}
f.bo = 0
f.bv = 0
}
func (f *decompressor) ensureAtLeast(n int) error {
if f.bv-f.bo >= n {
return nil
}
if f.err != nil {
return f.err
}
if f.bv != f.bo {
copy(f.b[:f.bv-f.bo], f.b[f.bo:f.bv])
}
n, err := io.ReadAtLeast(f.r, f.b[f.bv-f.bo:], n)
if err != nil {
if err == io.EOF { //nolint:errorlint
err = io.ErrUnexpectedEOF
} else {
f.fail(err)
}
return err
}
f.bv = f.bv - f.bo + n
f.bo = 0
return nil
}
// feed retrieves another 16-bit word from the stream and consumes
// it into f.c. It returns false if there are no more bytes available.
// Otherwise, on error, it sets f.err.
func (f *decompressor) feed() bool {
err := f.ensureAtLeast(2)
if err == io.ErrUnexpectedEOF { //nolint:errorlint // returns io.ErrUnexpectedEOF by contract
return false
}
f.c |= (uint32(f.b[f.bo+1])<<8 | uint32(f.b[f.bo])) << (16 - f.nbits)
f.nbits += 16
f.bo += 2
return true
}
// getBits retrieves the next n bits from the byte stream. n
// must be <= 16. It sets f.err on error.
func (f *decompressor) getBits(n byte) uint16 {
if f.nbits < n {
if !f.feed() {
f.fail(io.ErrUnexpectedEOF)
}
}
c := uint16(f.c >> (32 - n))
f.c <<= n
f.nbits -= n
return c
}
type huffman struct {
extra [][]uint16
maxbits byte
table [tablesize]uint16
}
// buildTable builds a huffman decoding table from a slice of code lengths,
// one per code, in order. Each code length must be <= maxTreePathLen.
// See https://en.wikipedia.org/wiki/Canonical_Huffman_code.
func buildTable(codelens []byte) *huffman {
// Determine the number of codes of each length, and the
// maximum length.
var count [maxTreePathLen + 1]uint
var max byte
for _, cl := range codelens {
count[cl]++
if max < cl {
max = cl
}
}
if max == 0 {
return &huffman{}
}
// Determine the first code of each length.
var first [maxTreePathLen + 1]uint
code := uint(0)
for i := byte(1); i <= max; i++ {
code <<= 1
first[i] = code
code += count[i]
}
if code != 1<<max {
return nil
}
// Build a table for code lookup. For code sizes < max,
// put all possible suffixes for the code into the table, too.
// For max > tablebits, split long codes into additional tables
// of suffixes of max-tablebits length.
h := &huffman{maxbits: max}
if max > tablebits {
core := first[tablebits+1] / 2 // Number of codes that fit without extra tables
nextra := 1<<tablebits - core // Number of extra entries
h.extra = make([][]uint16, nextra)
for code := core; code < 1<<tablebits; code++ {
h.table[code] = uint16(code - core)
h.extra[code-core] = make([]uint16, 1<<(max-tablebits))
}
}
for i, cl := range codelens {
if cl != 0 {
code := first[cl]
first[cl]++
v := uint16(cl)<<lenshift | uint16(i)
if cl <= tablebits {
extendedCode := code << (tablebits - cl)
for j := uint(0); j < 1<<(tablebits-cl); j++ {
h.table[extendedCode+j] = v
}
} else {
prefix := code >> (cl - tablebits)
suffix := code & (1<<(cl-tablebits) - 1)
extendedCode := suffix << (max - cl)
for j := uint(0); j < 1<<(max-cl); j++ {
h.extra[h.table[prefix]][extendedCode+j] = v
}
}
}
}
return h
}
// getCode retrieves the next code using the provided
// huffman tree. It sets f.err on error.
func (f *decompressor) getCode(h *huffman) uint16 {
if h.maxbits > 0 {
if f.nbits < maxTreePathLen {
f.feed()
}
// For codes with length < tablebits, it doesn't matter
// what the remainder of the bits used for table lookup
// are, since entries with all possible suffixes were
// added to the table.
c := h.table[f.c>>(32-tablebits)]
if !(c >= 1<<lenshift) {
// The code is not in c.
c = h.extra[c][f.c<<tablebits>>(32-(h.maxbits-tablebits))]
}
n := byte(c >> lenshift)
if f.nbits >= n {
// Only consume the length of the code, not the maximum
// code length.
f.c <<= n
f.nbits -= n
return c & codemask
}
f.fail(io.ErrUnexpectedEOF)
return 0
}
// This is an empty tree. It should not be used.
f.fail(errCorrupt)
return 0
}
// readTree updates the huffman tree path lengths in lens by
// reading and decoding lengths from the byte stream. lens
// should be prepopulated with the previous block's tree's path
// lengths. For the first block, lens should be zero.
func (f *decompressor) readTree(lens []byte) error {
// Get the pre-tree for the main tree.
var pretreeLen [20]byte
for i := range pretreeLen {
pretreeLen[i] = byte(f.getBits(4))
}
if f.err != nil {
return f.err
}
h := buildTable(pretreeLen[:])
// The lengths are encoded as a series of huffman codes
// encoded by the pre-tree.
for i := 0; i < len(lens); {
c := byte(f.getCode(h))
if f.err != nil {
return f.err
}
switch {
case c <= 16: // length is delta from previous length
lens[i] = (lens[i] + 17 - c) % 17
i++
case c == 17: // next n + 4 lengths are zero
zeroes := int(f.getBits(4)) + 4
if i+zeroes > len(lens) {
return errCorrupt
}
for j := 0; j < zeroes; j++ {
lens[i+j] = 0
}
i += zeroes
case c == 18: // next n + 20 lengths are zero
zeroes := int(f.getBits(5)) + 20
if i+zeroes > len(lens) {
return errCorrupt
}
for j := 0; j < zeroes; j++ {
lens[i+j] = 0
}
i += zeroes
case c == 19: // next n + 4 lengths all have the same value
same := int(f.getBits(1)) + 4
if i+same > len(lens) {
return errCorrupt
}
c = byte(f.getCode(h))
if c > 16 {
return errCorrupt
}
l := (lens[i] + 17 - c) % 17
for j := 0; j < same; j++ {
lens[i+j] = l
}
i += same
default:
return errCorrupt
}
}
if f.err != nil {
return f.err
}
return nil
}
func (f *decompressor) readBlockHeader() (byte, uint16, error) {
// If the previous block was an unaligned uncompressed block, restore
// 2-byte alignment.
if f.unaligned {
err := f.ensureAtLeast(1)
if err != nil {
return 0, 0, err
}
f.bo++
f.unaligned = false
}
blockType := f.getBits(3)
full := f.getBits(1)
var blockSize uint16
if full != 0 {
blockSize = maxBlockSize
} else {
blockSize = f.getBits(16)
if blockSize > maxBlockSize {
return 0, 0, errCorrupt
}
}
if f.err != nil {
return 0, 0, f.err
}
switch blockType {
case verbatimBlock, alignedOffsetBlock:
// The caller will read the huffman trees.
case uncompressedBlock:
if f.nbits > 16 {
panic("impossible: more than one 16-bit word remains")
}
// Drop the remaining bits in the current 16-bit word
// If there are no bits left, discard a full 16-bit word.
n := f.nbits
if n == 0 {
n = 16
}
f.getBits(n)
// Read the LRU values for the next block.
err := f.ensureAtLeast(12)
if err != nil {
return 0, 0, err
}
f.lru[0] = uint16(binary.LittleEndian.Uint32(f.b[f.bo : f.bo+4]))
f.lru[1] = uint16(binary.LittleEndian.Uint32(f.b[f.bo+4 : f.bo+8]))
f.lru[2] = uint16(binary.LittleEndian.Uint32(f.b[f.bo+8 : f.bo+12]))
f.bo += 12
default:
return 0, 0, errCorrupt
}
return byte(blockType), blockSize, nil
}
// readTrees reads the two or three huffman trees for the current block.
// readAligned specifies whether to read the aligned offset tree.
func (f *decompressor) readTrees(readAligned bool) (main *huffman, length *huffman, aligned *huffman, err error) {
// Aligned offset blocks start with a small aligned offset tree.
if readAligned {
var alignedLen [8]byte
for i := range alignedLen {
alignedLen[i] = byte(f.getBits(3))
}
aligned = buildTable(alignedLen[:])
if aligned == nil {
return main, length, aligned, errors.New("corrupt")
}
}
// The main tree is encoded in two parts.
err = f.readTree(f.mainlens[:maincodesplit])
if err != nil {
return main, length, aligned, err
}
err = f.readTree(f.mainlens[maincodesplit:])
if err != nil {
return main, length, aligned, err
}
main = buildTable(f.mainlens[:])
if main == nil {
return main, length, aligned, errors.New("corrupt")
}
// The length tree is encoding in a single part.
err = f.readTree(f.lenlens[:])
if err != nil {
return main, length, aligned, err
}
length = buildTable(f.lenlens[:])
if length == nil {
return main, length, aligned, errors.New("corrupt")
}
return main, length, aligned, f.err
}
// readCompressedBlock decodes a compressed block, writing into the window
// starting at start and ending at end, and using the provided huffman trees.
func (f *decompressor) readCompressedBlock(start, end uint16, hmain, hlength, haligned *huffman) (int, error) {
i := start
for i < end {
main := f.getCode(hmain)
if f.err != nil {
break
}
if main < 256 {
// Literal byte.
f.window[i] = byte(main)
i++
continue
}
// This is a match backward in the window. Determine
// the offset and dlength.
matchlen := (main - 256) % 8
slot := (main - 256) / 8
// The length is either the low bits of the code,
// or if this is 7, is encoded with the length tree.
if matchlen == 7 {
matchlen += f.getCode(hlength)
}
matchlen += 2
var matchoffset uint16
if slot < 3 { //nolint:nestif // todo: simplify nested complexity
// The offset is one of the LRU values.
matchoffset = f.lru[slot]
f.lru[slot] = f.lru[0]
f.lru[0] = matchoffset
} else {
// The offset is encoded as a combination of the
// slot and more bits from the bit stream.
offsetbits := footerBits[slot]
var verbatimbits, alignedbits uint16
if offsetbits > 0 {
if haligned != nil && offsetbits >= 3 {
// This is an aligned offset block. Combine
// the bits written verbatim with the aligned
// offset tree code.
verbatimbits = f.getBits(offsetbits-3) * 8
alignedbits = f.getCode(haligned)
} else {
// There are no aligned offset bits to read,
// only verbatim bits.
verbatimbits = f.getBits(offsetbits)
alignedbits = 0
}
}
matchoffset = basePosition[slot] + verbatimbits + alignedbits - 2
// Update the LRU cache.
f.lru[2] = f.lru[1]
f.lru[1] = f.lru[0]
f.lru[0] = matchoffset
}
if !(matchoffset <= i && matchlen <= end-i) {
f.fail(errCorrupt)
break
}
copyend := i + matchlen
for ; i < copyend; i++ {
f.window[i] = f.window[i-matchoffset]
}
}
return int(i - start), f.err
}
// readBlock decodes the current block and returns the number of uncompressed bytes.
func (f *decompressor) readBlock(start uint16) (int, error) {
blockType, size, err := f.readBlockHeader()
if err != nil {
return 0, err
}
if blockType == uncompressedBlock {
if size%2 == 1 {
// Remember to realign the byte stream at the next block.
f.unaligned = true
}
copied := 0
if f.bo < f.bv {
copied = int(size)
s := int(start)
if copied > f.bv-f.bo {
copied = f.bv - f.bo
}
copy(f.window[s:s+copied], f.b[f.bo:f.bo+copied])
f.bo += copied
}
n, err := io.ReadFull(f.r, f.window[start+uint16(copied):start+size])
return copied + n, err
}
hmain, hlength, haligned, err := f.readTrees(blockType == alignedOffsetBlock)
if err != nil {
return 0, err
}
return f.readCompressedBlock(start, start+size, hmain, hlength, haligned)
}
// decodeE8 reverses the 0xe8 x86 instruction encoding that was performed
// to the uncompressed data before it was compressed.
func decodeE8(b []byte, off int64) {
if off > maxe8offset || len(b) < 10 {
return
}
for i := 0; i < len(b)-10; i++ {
if b[i] == 0xe8 {
currentPtr := int32(off) + int32(i)
abs := int32(binary.LittleEndian.Uint32(b[i+1 : i+5]))
if abs >= -currentPtr && abs < e8filesize {
var rel int32
if abs >= 0 {
rel = abs - currentPtr
} else {
rel = abs + e8filesize
}
binary.LittleEndian.PutUint32(b[i+1:i+5], uint32(rel))
}
i += 4
}
}
}
func (f *decompressor) Read(b []byte) (int, error) {
// Read and uncompress everything.
if f.windowReader == nil {
n := 0
for n < f.uncompressed {
k, err := f.readBlock(uint16(n))
if err != nil {
return 0, err
}
n += k
}
decodeE8(f.window[:f.uncompressed], 0)
f.windowReader = bytes.NewReader(f.window[:f.uncompressed])
}
// Just read directly from the window.
return f.windowReader.Read(b)
}
func (*decompressor) Close() error {
return nil
}
// NewReader returns a new io.ReadCloser that decompresses a
// WIM LZX stream until uncompressedSize bytes have been returned.
func NewReader(r io.Reader, uncompressedSize int) (io.ReadCloser, error) {
if uncompressedSize > windowSize {
return nil, errors.New("uncompressed size is limited to 32KB")
}
f := &decompressor{
lru: [3]uint16{1, 1, 1},
uncompressed: uncompressedSize,
b: make([]byte, 4096),
r: r,
}
return f, nil
}
|