1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
// Originally written in 2015 by Dmitry Chestnykh.
// Modified in 2017 by Tony Arcieri.
//
// Miscreant implements Synthetic Initialization Vector (SIV)-based
// authenticated encryption using the AES block cipher (RFC 5297).
package miscreant
import (
"crypto/aes"
"crypto/cipher"
"crypto/subtle"
"errors"
"github.com/miscreant/miscreant.go/block"
"github.com/miscreant/miscreant.go/cmac"
"github.com/miscreant/miscreant.go/pmac"
"hash"
)
// MaxAssociatedDataItems is the maximum number of associated data items
const MaxAssociatedDataItems = 126
var (
// ErrKeySize indicates the given key size is not supported
ErrKeySize = errors.New("siv: bad key size")
// ErrNotAuthentic indicates a ciphertext is malformed or corrupt
ErrNotAuthentic = errors.New("siv: authentication failed")
// ErrTooManyAssociatedDataItems indicates more than MaxAssociatedDataItems were given
ErrTooManyAssociatedDataItems = errors.New("siv: too many associated data items")
)
// Cipher is an instance of AES-SIV, configured with either AES-CMAC or
// AES-PMAC as a message authentication code.
type Cipher struct {
// MAC function used to derive a synthetic IV and authenticate the message
h hash.Hash
// Block cipher function used to encrypt the message
b cipher.Block
// Internal buffers
tmp1, tmp2 block.Block
}
// NewAESCMACSIV returns a new AES-SIV cipher with the given key, which must be
// twice as long as an AES key, either 32 or 64 bytes to select AES-128
// (AES-CMAC-SIV-256), or AES-256 (AES-CMAC-SIV-512).
func NewAESCMACSIV(key []byte) (c *Cipher, err error) {
n := len(key)
if n != 32 && n != 64 {
return nil, ErrKeySize
}
macBlock, err := aes.NewCipher(key[:n/2])
if err != nil {
return nil, err
}
ctrBlock, err := aes.NewCipher(key[n/2:])
if err != nil {
return nil, err
}
c = new(Cipher)
c.h = cmac.New(macBlock)
c.b = ctrBlock
return c, nil
}
// NewAESPMACSIV returns a new AES-SIV cipher with the given key, which must be
// twice as long as an AES key, either 32 or 64 bytes to select AES-128
// (AES-PMAC-SIV-256), or AES-256 (AES-PMAC-SIV-512).
func NewAESPMACSIV(key []byte) (c *Cipher, err error) {
n := len(key)
if n != 32 && n != 64 {
return nil, ErrKeySize
}
macBlock, err := aes.NewCipher(key[:n/2])
if err != nil {
return nil, err
}
ctrBlock, err := aes.NewCipher(key[n/2:])
if err != nil {
return nil, err
}
c = new(Cipher)
c.h = pmac.New(macBlock)
c.b = ctrBlock
return c, nil
}
// Overhead returns the difference between plaintext and ciphertext lengths.
func (c *Cipher) Overhead() int {
return c.h.Size()
}
// Seal encrypts and authenticates plaintext, authenticates the given
// associated data items, and appends the result to dst, returning the updated
// slice.
//
// The plaintext and dst may alias exactly or not at all.
//
// For nonce-based encryption, the nonce should be the last associated data item.
func (c *Cipher) Seal(dst []byte, plaintext []byte, data ...[]byte) ([]byte, error) {
if len(data) > MaxAssociatedDataItems {
return nil, ErrTooManyAssociatedDataItems
}
// Authenticate
iv := c.s2v(data, plaintext)
ret, out := sliceForAppend(dst, len(iv)+len(plaintext))
copy(out, iv)
// Encrypt
zeroIVBits(iv)
ctr := cipher.NewCTR(c.b, iv)
ctr.XORKeyStream(out[len(iv):], plaintext)
return ret, nil
}
// Open decrypts ciphertext, authenticates the decrypted plaintext and the given
// associated data items and, if successful, appends the resulting plaintext
// to dst, returning the updated slice. The additional data items must match the
// items passed to Seal.
//
// The ciphertext and dst may alias exactly or not at all.
//
// For nonce-based encryption, the nonce should be the last associated data item.
func (c *Cipher) Open(dst []byte, ciphertext []byte, data ...[]byte) ([]byte, error) {
if len(data) > MaxAssociatedDataItems {
return nil, ErrTooManyAssociatedDataItems
}
if len(ciphertext) < c.Overhead() {
return nil, ErrNotAuthentic
}
// Decrypt
iv := c.tmp1[:c.Overhead()]
copy(iv, ciphertext)
zeroIVBits(iv)
ctr := cipher.NewCTR(c.b, iv)
ret, out := sliceForAppend(dst, len(ciphertext)-len(iv))
ctr.XORKeyStream(out, ciphertext[len(iv):])
// Authenticate
expected := c.s2v(data, out)
if subtle.ConstantTimeCompare(ciphertext[:len(iv)], expected) != 1 {
return nil, ErrNotAuthentic
}
return ret, nil
}
func (c *Cipher) s2v(s [][]byte, sn []byte) []byte {
h := c.h
h.Reset()
tmp, d := c.tmp1, c.tmp2
tmp.Clear()
// NOTE(dchest): The standalone S2V returns CMAC(1) if the number of
// passed vectors is zero, however in SIV construction this case is
// never triggered, since we always pass plaintext as the last vector
// (even if it's zero-length), so we omit this case.
_, err := h.Write(tmp[:])
if err != nil {
panic(err)
}
copy(d[:], h.Sum(d[:0]))
h.Reset()
for _, v := range s {
_, err := h.Write(v)
if err != nil {
panic(err)
}
copy(tmp[:], h.Sum(tmp[:0]))
h.Reset()
d.Dbl()
xor(d[:], tmp[:])
}
tmp.Clear()
if len(sn) >= h.BlockSize() {
n := len(sn) - len(d)
copy(tmp[:], sn[n:])
_, err = h.Write(sn[:n])
if err != nil {
panic(err)
}
} else {
copy(tmp[:], sn)
tmp[len(sn)] = 0x80
d.Dbl()
}
xor(tmp[:], d[:])
_, err = h.Write(tmp[:])
if err != nil {
panic(err)
}
return h.Sum(tmp[:0])
}
func xor(a, b []byte) {
for i, v := range b {
a[i] ^= v
}
}
func zeroIVBits(iv []byte) {
// "We zero-out the top bit in each of the last two 32-bit words
// of the IV before assigning it to Ctr"
// — http://web.cs.ucdavis.edu/~rogaway/papers/siv.pdf
iv[len(iv)-8] &= 0x7f
iv[len(iv)-4] &= 0x7f
}
// sliceForAppend takes a slice and a requested number of bytes. It returns a
// slice with the contents of the given slice followed by that many bytes and a
// second slice that aliases into it and contains only the extra bytes. If the
// original slice has sufficient capacity then no allocation is performed.
func sliceForAppend(in []byte, n int) (head, tail []byte) {
if total := len(in) + n; cap(in) >= total {
head = in[:total]
} else {
head = make([]byte, total)
copy(head, in)
}
tail = head[len(in):]
return
}
|