1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
|
package crypto
import (
"fmt"
"math/big"
)
type RSAKeyParameters interface {
Modulus() *big.Int
Exponent() *big.Int
Private() bool
}
func NewRSAKeyParameters(isPrivate bool, modulus, exponent *big.Int) RSAKeyParameters {
return &rsaKeyParameters{
privateKey: isPrivate,
modulus: modulus,
exponent: exponent,
}
}
type rsaKeyParameters struct {
privateKey bool
modulus *big.Int
exponent *big.Int
}
func (r *rsaKeyParameters) Modulus() *big.Int { return r.modulus }
func (r *rsaKeyParameters) Exponent() *big.Int { return r.exponent }
func (r *rsaKeyParameters) Private() bool { return r.privateKey }
func NewRSAPrivateCrtKeyParameters(
modulus,
publicExponent,
privateExponent,
p,
q,
dP,
dQ,
qInv *big.Int) *RSAPrivateCrtKeyParameters {
return &RSAPrivateCrtKeyParameters{
RSAKeyParameters: NewRSAKeyParameters(true, modulus, privateExponent),
e: publicExponent,
p: p,
q: q,
dP: dP,
dQ: dQ,
qInv: qInv,
}
}
type RSAPrivateCrtKeyParameters struct {
RSAKeyParameters
e *big.Int
p *big.Int
q *big.Int
dP *big.Int
dQ *big.Int
qInv *big.Int
}
func (r *RSAPrivateCrtKeyParameters) PublicExponent() *big.Int { return r.e }
func (r *RSAPrivateCrtKeyParameters) P() *big.Int { return r.p }
func (r *RSAPrivateCrtKeyParameters) Q() *big.Int { return r.q }
func (r *RSAPrivateCrtKeyParameters) DP() *big.Int { return r.dP }
func (r *RSAPrivateCrtKeyParameters) DQ() *big.Int { return r.dQ }
func (r *RSAPrivateCrtKeyParameters) QInv() *big.Int { return r.qInv }
type RSAEngine struct {
*RSACoreEngine
}
func (r *RSAEngine) Init(forEncryption bool, key RSAKeyParameters) {
if r.RSACoreEngine == nil {
r.RSACoreEngine = newRsaCoreEngine()
}
r.RSACoreEngine.Init(forEncryption, key)
}
func (r *RSAEngine) ProcessBlock(in []byte, inOff, inLen int) []byte {
if r.RSACoreEngine == nil {
panic(fmt.Errorf("RAS engine not initialized"))
}
return r.RSACoreEngine.ConvertOutput(r.RSACoreEngine.ProcessBlock(r.RSACoreEngine.ConvertInput(in, inOff, inLen)))
}
func newRsaCoreEngine() *RSACoreEngine {
return &RSACoreEngine{}
}
type RSACoreEngine struct {
key RSAKeyParameters
forEncryption bool
}
func (r *RSACoreEngine) Init(forEncryption bool, key RSAKeyParameters) {
r.key = key
r.forEncryption = forEncryption
}
func (r *RSACoreEngine) InputBlockSize() int {
bitSize := r.key.Modulus().BitLen()
if r.forEncryption {
return (bitSize+7)/8 - 1
} else {
return (bitSize + 7) / 8
}
}
func (r *RSACoreEngine) OutputBlockSize() int {
bitSize := r.key.Modulus().BitLen()
if r.forEncryption {
return (bitSize + 7) / 8
} else {
return (bitSize+7)/8 - 1
}
}
func (r *RSACoreEngine) ConvertInput(in []byte, inOff, inLen int) *big.Int {
if inLen > (r.InputBlockSize() + 1) {
panic(fmt.Errorf("input too large for RSA cipher."))
} else if inLen == (r.InputBlockSize()+1) && !r.forEncryption {
panic(fmt.Errorf("input too large for RSA cipher."))
}
var block []byte
if inOff != 0 || inLen != len(in) {
block = make([]byte, inLen)
// System.arraycopy(in, inOff, block, 0, inLen);
arrayCopy(in, inOff, block, 0, inLen)
} else {
block = in
}
res := new(big.Int)
res = res.Abs(res.SetBytes(block))
if res.Cmp(r.key.Modulus()) >= 0 {
panic(fmt.Errorf("input too large for RSA cipher."))
}
return res
}
func (r *RSACoreEngine) ConvertOutput(result *big.Int) []byte {
output := result.Bytes()
if r.forEncryption {
if output[0] == 0 && len(output) > r.OutputBlockSize() {
// have ended up with an extra zero byte, copy down.
tmp := make([]byte, len(output)-1)
// System.arraycopy(output, 1, tmp, 0, tmp.length);
arrayCopy(output, 1, tmp, 0, len(tmp))
return tmp
}
if len(output) < r.OutputBlockSize() { // have ended up with less bytes than normal, lengthen
tmp := make([]byte, r.OutputBlockSize())
// System.arraycopy(output, 0, tmp, tmp.length - output.length, output.length);
arrayCopy(output, 0, tmp, len(tmp)-len(output), len(output))
return tmp
}
} else {
if output[0] == 0 { // have ended up with an extra zero byte, copy down.
tmp := make([]byte, len(output)-1)
// System.arraycopy(output, 1, tmp, 0, tmp.length);
arrayCopy(output, 1, tmp, 0, len(tmp))
return tmp
}
}
return output
}
func (r *RSACoreEngine) ProcessBlock(input *big.Int) *big.Int {
if crtKey, ok := r.key.(*RSAPrivateCrtKeyParameters); ok {
//
// we have the extra factors, use the Chinese Remainder Theorem - the author
// wishes to express his thanks to Dirk Bonekaemper at rtsffm.com for
// advice regarding the expression of this.
//
p := crtKey.P()
q := crtKey.Q()
dP := crtKey.DP()
dQ := crtKey.DQ()
qInv := crtKey.QInv()
var mP, mQ, h, m *big.Int
// mP = ((input mod p) ^ dP)) mod p
mP = mP.Exp(new(big.Int).Rem(input, p), dP, p)
// mQ = ((input mod q) ^ dQ)) mod q
mQ = mQ.Exp(new(big.Int).Rem(input, q), dQ, q)
// h = qInv * (mP - mQ) mod p
h = h.Sub(mP, mQ)
h = h.Mul(h, qInv)
h = h.Mod(h, p) // mod (in Java) returns the positive residual
// m = h * q + mQ
m = h.Mul(h, q)
m = m.Add(m, mQ)
return m
} else {
return new(big.Int).Exp(input, r.key.Exponent(), r.key.Modulus())
}
}
|