1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269
|
package fat
import (
"errors"
"fmt"
"math"
"github.com/mitchellh/go-fs"
)
// The first cluster that can really hold user data is always 2
const FirstCluster = 2
// FAT is the actual file allocation table data structure that is
// stored on disk to describe the various clusters on the disk.
type FAT struct {
bs *BootSectorCommon
entries []uint32
}
func DecodeFAT(device fs.BlockDevice, bs *BootSectorCommon, n int) (*FAT, error) {
if n > int(bs.NumFATs) {
return nil, fmt.Errorf("FAT #%d greater than total FATs: %d", n, bs.NumFATs)
}
data := make([]byte, bs.SectorsPerFat*uint32(bs.BytesPerSector))
if _, err := device.ReadAt(data, int64(bs.FATOffset(n))); err != nil {
return nil, err
}
result := &FAT{
bs: bs,
entries: make([]uint32, FATEntryCount(bs)),
}
fatType := bs.FATType()
for i := 0; i < int(FATEntryCount(bs)); i++ {
var entryData uint32
switch fatType {
case FAT12:
entryData = fatReadEntry12(data, i)
case FAT16:
entryData = fatReadEntry16(data, i)
default:
entryData = fatReadEntry32(data, i)
}
result.entries[i] = entryData
}
return result, nil
}
// NewFAT creates a new FAT data structure, properly initialized.
func NewFAT(bs *BootSectorCommon) (*FAT, error) {
result := &FAT{
bs: bs,
entries: make([]uint32, FATEntryCount(bs)),
}
// Set the initial two entries according to spec
result.entries[0] = (uint32(bs.Media) & 0xFF) |
(0xFFFFFF00 & result.entryMask())
result.entries[1] = 0xFFFFFFFF & result.entryMask()
return result, nil
}
// Bytes returns the raw bytes for the FAT that should be written to
// the block device.
func (f *FAT) Bytes() []byte {
result := make([]byte, f.bs.SectorsPerFat*uint32(f.bs.BytesPerSector))
for i, entry := range f.entries {
switch f.bs.FATType() {
case FAT12:
f.writeEntry12(result, i, entry)
case FAT16:
f.writeEntry16(result, i, entry)
default:
f.writeEntry32(result, i, entry)
}
}
return result
}
func (f *FAT) AllocChain() (uint32, error) {
return f.allocNew()
}
func (f *FAT) allocNew() (uint32, error) {
dataSize := (f.bs.TotalSectors * uint32(f.bs.BytesPerSector))
dataSize -= f.bs.DataOffset()
clusterCount := dataSize / f.bs.BytesPerCluster()
lastClusterIndex := clusterCount + FirstCluster
var availIdx uint32
found := false
for i := uint32(FirstCluster); i < lastClusterIndex; i++ {
if f.entries[i] == 0 {
availIdx = i
found = true
break
}
}
if !found {
return 0, errors.New("FAT FULL")
}
// Mark that this is now in use
f.entries[availIdx] = 0xFFFFFFFF & f.entryMask()
return availIdx, nil
}
// Chain returns the chain of clusters starting at a certain cluster.
func (f *FAT) Chain(start uint32) []uint32 {
chain := make([]uint32, 0, 2)
cluster := start
for {
chain = append(chain, cluster)
cluster = f.entries[cluster]
if f.isEofCluster(cluster) || cluster == 0 {
break
}
}
return chain
}
// ResizeChain takes a given cluster number and resizes the chain
// to the given length. It returns the new chain of clusters.
func (f *FAT) ResizeChain(start uint32, length int) ([]uint32, error) {
chain := f.Chain(start)
if len(chain) == length {
return chain, nil
}
change := int(math.Abs(float64(length - len(chain))))
if length > len(chain) {
var lastCluster uint32
lastCluster = chain[0]
for i := 1; i < len(chain); i++ {
if f.isEofCluster(f.entries[lastCluster]) {
break
}
lastCluster = chain[i]
}
for i := 0; i < change; i++ {
newCluster, err := f.allocNew()
if err != nil {
return nil, err
}
f.entries[lastCluster] = newCluster
lastCluster = newCluster
}
} else {
panic("making chains smaller not implemented yet")
}
return f.Chain(start), nil
}
func (f *FAT) WriteToDevice(device fs.BlockDevice) error {
fatBytes := f.Bytes()
for i := 0; i < int(f.bs.NumFATs); i++ {
offset := int64(f.bs.FATOffset(i))
if _, err := device.WriteAt(fatBytes, offset); err != nil {
return err
}
}
return nil
}
func (f *FAT) entryMask() uint32 {
switch f.bs.FATType() {
case FAT12:
return 0x0FFF
case FAT16:
return 0xFFFF
default:
return 0x0FFFFFFF
}
}
func (f *FAT) isEofCluster(cluster uint32) bool {
return cluster >= (0xFFFFFF8 & f.entryMask())
}
func (f *FAT) writeEntry12(data []byte, idx int, entry uint32) {
dataIdx := idx + (idx / 2)
data = data[dataIdx : dataIdx+2]
if idx%2 == 1 {
// ODD
data[0] |= byte((entry & 0x0F) << 4)
data[1] = byte((entry >> 4) & 0xFF)
} else {
// Even
data[0] = byte(entry & 0xFF)
data[1] = byte((entry >> 8) & 0x0F)
}
}
func (f *FAT) writeEntry16(data []byte, idx int, entry uint32) {
idx <<= 1
data[idx] = byte(entry & 0xFF)
data[idx+1] = byte((entry >> 8) & 0xFF)
}
func (f *FAT) writeEntry32(data []byte, idx int, entry uint32) {
idx <<= 2
data[idx] = byte(entry & 0xFF)
data[idx+1] = byte((entry >> 8) & 0xFF)
data[idx+2] = byte((entry >> 16) & 0xFF)
data[idx+3] = byte((entry >> 24) & 0xFF)
}
// FATEntryCount returns the number of entries per fat for the given
// boot sector.
func FATEntryCount(bs *BootSectorCommon) uint32 {
// Determine the number of entries that'll go in the FAT.
var entryCount uint32 = bs.SectorsPerFat * uint32(bs.BytesPerSector)
switch bs.FATType() {
case FAT12:
entryCount = uint32((uint64(entryCount) * 8) / 12)
case FAT16:
entryCount /= 2
case FAT32:
entryCount /= 4
default:
panic("impossible fat type")
}
return entryCount
}
func fatReadEntry12(data []byte, idx int) uint32 {
idx += idx / 2
var result uint32 = (uint32(data[idx+1]) << 8) | uint32(data[idx])
if idx%2 == 0 {
return result & 0xFFF
} else {
return result >> 4
}
}
func fatReadEntry16(data []byte, idx int) uint32 {
idx <<= 1
return (uint32(data[idx+1]) << 8) | uint32(data[idx])
}
func fatReadEntry32(data []byte, idx int) uint32 {
idx <<= 2
return (uint32(data[idx+3]) << 24) |
(uint32(data[idx+2]) << 16) |
(uint32(data[idx+1]) << 8) |
uint32(data[idx+0])
}
|