File: asmtest.go

package info (click to toggle)
golang-github-mmcloughlin-avo 0.5.0-1
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 15,024 kB
  • sloc: xml: 71,029; asm: 14,862; sh: 194; makefile: 21; ansic: 11
file content (179 lines) | stat: -rw-r--r-- 6,306 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
package gen

import (
	"fmt"
	"math"
	"strconv"
	"strings"

	"github.com/mmcloughlin/avo/internal/inst"
	"github.com/mmcloughlin/avo/internal/prnt"
	"github.com/mmcloughlin/avo/printer"
)

type asmtest struct {
	cfg   printer.Config
	sym   string // reference to the test function symbol
	rel8  string // label to be used for near jumps
	rel32 string // label for far jumps
	prnt.Generator
}

// NewAsmTest prints one massive assembly function containing a line for every
// instruction form in the database. The intention is to pass this to the Go
// assembler and confirm there are no errors, thus helping to ensure our
// database is compatible.
func NewAsmTest(cfg printer.Config) Interface {
	return &asmtest{cfg: cfg}
}

func (a *asmtest) Generate(is []inst.Instruction) ([]byte, error) {
	a.Printf("// %s\n\n", a.cfg.GeneratedWarning())

	a.sym = "\u00b7loadertest(SB)"
	a.Printf("TEXT %s, 0, $0\n", a.sym)

	// Define a label for far jumps.
	a.Printf("rel32:\n")
	a.rel32 = "rel32"

	for _, i := range is {
		a.Printf("\t// %s %s\n", i.Opcode, i.Summary)
		if skip, msg := a.skip(i.Opcode); skip {
			a.Printf("\t// SKIP: %s\n", msg)
			continue
		}

		if i.Opcode[0] == 'J' {
			label := fmt.Sprintf("rel8_%s", strings.ToLower(i.Opcode))
			a.Printf("%s:\n", label)
			a.rel8 = label
		}

		for _, f := range i.Forms {
			as, err := a.args(i.Opcode, f.Operands)
			if err != nil {
				return nil, fmt.Errorf("tests for %s: %w", i.Opcode, err)
			}
			for _, suffixes := range f.SupportedSuffixes() {
				opcode := i.Opcode
				if len(suffixes) > 0 {
					opcode += "." + suffixes.String()
				}
				a.Printf("\t%s\t%s\n", opcode, strings.Join(as, ", "))
			}
		}
		a.Printf("\n")
	}

	a.Printf("\tRET\n")

	return a.Result()
}

func (a asmtest) skip(opcode string) (bool, string) {
	prefixes := map[string]string{
		"PUSH": "PUSH can produce 'unbalanced PUSH/POP' assembler error",
		"POP":  "POP can produce 'unbalanced PUSH/POP' assembler error",
	}
	for p, m := range prefixes {
		if strings.HasPrefix(opcode, p) {
			return true, m
		}
	}
	return false, ""
}

func (a asmtest) args(opcode string, ops []inst.Operand) ([]string, error) {
	// Special case for CALL, since it needs a different type of rel32 argument than others.
	if opcode == "CALL" {
		return []string{a.sym}, nil
	}

	as := make([]string, len(ops))
	for i, op := range ops {
		a := a.arg(op.Type, i)
		if a == "" {
			return nil, fmt.Errorf("unsupported operand type %q", op.Type)
		}
		as[i] = a
	}
	return as, nil
}

// arg generates an argument for an operand of the given type.
func (a asmtest) arg(t string, i int) string {
	m := map[string]string{
		"1":     "$1", // <xs:enumeration value="1" />
		"3":     "$3", // <xs:enumeration value="3" />
		"imm2u": "$3",
		// <xs:enumeration value="imm4" />
		"imm8":  fmt.Sprintf("$%d", math.MaxInt8),  // <xs:enumeration value="imm8" />
		"imm16": fmt.Sprintf("$%d", math.MaxInt16), // <xs:enumeration value="imm16" />
		"imm32": fmt.Sprintf("$%d", math.MaxInt32), // <xs:enumeration value="imm32" />
		"imm64": fmt.Sprintf("$%d", int64(math.MaxInt64)), // <xs:enumeration value="imm64" />

		"al":   "AL",                    // <xs:enumeration value="al" />
		"cl":   "CL",                    // <xs:enumeration value="cl" />
		"r8":   "CH",                    // <xs:enumeration value="r8" />
		"ax":   "AX",                    // <xs:enumeration value="ax" />
		"r16":  "SI",                    // <xs:enumeration value="r16" />
		"eax":  "AX",                    // <xs:enumeration value="eax" />
		"r32":  "DX",                    // <xs:enumeration value="r32" />
		"rax":  "AX",                    // <xs:enumeration value="rax" />
		"r64":  "R15",                   // <xs:enumeration value="r64" />
		"mm":   "M5",                    // <xs:enumeration value="mm" />
		"xmm0": "X0",                    // <xs:enumeration value="xmm0" />
		"xmm":  "X" + strconv.Itoa(7+i), // <xs:enumeration value="xmm" />
		// <xs:enumeration value="xmm{k}" />
		// <xs:enumeration value="xmm{k}{z}" />
		"ymm": "Y" + strconv.Itoa(3+i), // <xs:enumeration value="ymm" />
		// <xs:enumeration value="ymm{k}" />
		// <xs:enumeration value="ymm{k}{z}" />
		"zmm": "Z" + strconv.Itoa(16+i), // <xs:enumeration value="zmm" />
		// <xs:enumeration value="zmm{k}" />
		// <xs:enumeration value="zmm{k}{z}" />
		"k": "K" + strconv.Itoa(1+i), // <xs:enumeration value="k" />
		// <xs:enumeration value="k{k}" />
		// <xs:enumeration value="moffs32" />
		// <xs:enumeration value="moffs64" />
		"m":   "0(AX)(CX*2)",  // <xs:enumeration value="m" />
		"m8":  "8(AX)(CX*2)",  // <xs:enumeration value="m8" />
		"m16": "16(AX)(CX*2)", // <xs:enumeration value="m16" />
		// <xs:enumeration value="m16{k}{z}" />
		"m32": "32(AX)(CX*2)", // <xs:enumeration value="m32" />
		// <xs:enumeration value="m32{k}" />
		// <xs:enumeration value="m32{k}{z}" />
		"m64": "64(AX)(CX*2)", // <xs:enumeration value="m64" />
		// <xs:enumeration value="m64{k}" />
		// <xs:enumeration value="m64{k}{z}" />
		"m128": "128(AX)(CX*2)", // <xs:enumeration value="m128" />
		// <xs:enumeration value="m128{k}{z}" />
		"m256": "256(AX)(CX*2)", // <xs:enumeration value="m256" />
		// <xs:enumeration value="m256{k}{z}" />
		"m512": "512(AX)(CX*2)", // <xs:enumeration value="m512" />
		// <xs:enumeration value="m512{k}{z}" />
		"vm32x": "32(X14*8)", // <xs:enumeration value="vm32x" />
		// <xs:enumeration value="vm32x{k}" />
		"vm64x": "64(X14*8)", // <xs:enumeration value="vm64x" />
		// <xs:enumeration value="vm64x{k}" />
		"vm32y": "32(Y13*8)", // <xs:enumeration value="vm32y" />
		// <xs:enumeration value="vm32y{k}" />
		"vm64y": "64(Y13*8)", // <xs:enumeration value="vm64y" />
		// <xs:enumeration value="vm64y{k}" />
		"vm32z": "32(Z13*8)", // <xs:enumeration value="vm32z" />
		// <xs:enumeration value="vm32z{k}" />
		"vm64z": "64(Z13*8)", // <xs:enumeration value="vm64z" />
		// <xs:enumeration value="vm64z{k}" />
		"rel8":  a.rel8,  // <xs:enumeration value="rel8" />
		"rel32": a.rel32, // <xs:enumeration value="rel32" />
		// <xs:enumeration value="{er}" />
		// <xs:enumeration value="{sae}" />

		// Appear unused:
		"r8l":  "????", // <xs:enumeration value="r8l" />
		"r16l": "????", // <xs:enumeration value="r16l" />
		"r32l": "????", // <xs:enumeration value="r32l" />
	}
	return m[t]
}