1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724
|
// Package opcodesxml is a reader for the Opcodes XML database.
package opcodesxml
import (
"encoding/xml"
"io"
"os"
)
// Read reads Opcodes XML format.
func Read(r io.Reader) (*InstructionSet, error) {
d := xml.NewDecoder(r)
is := &InstructionSet{}
if err := d.Decode(is); err != nil {
return nil, err
}
return is, nil
}
// ReadFile reads the given Opcodes XML file.
func ReadFile(filename string) (*InstructionSet, error) {
f, err := os.Open(filename)
if err != nil {
return nil, err
}
defer f.Close()
return Read(f)
}
// InstructionSet is entire x86-64 instruction set.
type InstructionSet struct {
Name string `xml:"name,attr"`
Instructions []Instruction `xml:"Instruction"`
}
// Instruction represents one x86 mnemonic and its forms.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L7-L14
//
// """Instruction is defined by its mnemonic name (in Intel-style assembly).
//
// An instruction may have multiple forms, that mainly differ by operand types.
//
// :ivar name: instruction name in Intel-style assembly (PeachPy, NASM and YASM assemblers).
// :ivar summary: a summary description of the instruction name.
// :ivar forms: a list of :class:`InstructionForm` objects representing the instruction forms.
// """
type Instruction struct {
Name string `xml:"name,attr"`
Summary string `xml:"summary,attr"`
Forms []Form `xml:"InstructionForm"`
}
// Form represents one possible collection of operands an instruction may take.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L29-L85
//
// """Instruction form is a combination of mnemonic name and operand types.
//
// An instruction form may have multiple possible encodings.
//
// :ivar name: instruction name in PeachPy, NASM and YASM assemblers.
// :ivar gas_name: instruction form name in GNU assembler (gas).
// :ivar go_name: instruction form name in Go/Plan 9 assembler (8a).
//
// None means instruction is not supported in Go/Plan 9 assembler.
//
// :ivar mmx_mode: MMX technology state required or forced by this instruction. Possible values are:
//
// "FPU"
// Instruction requires the MMX technology state to be clear.
//
// "MMX"
// Instruction causes transition to MMX technology state.
//
// None
// Instruction neither affects nor cares about the MMX technology state.
//
// :ivar xmm_mode: XMM registers state accessed by this instruction. Possible values are:
//
// "SSE"
// Instruction accesses XMM registers in legacy SSE mode.
//
// "AVX"
// Instruction accesses XMM registers in AVX mode.
//
// None
// Instruction does not affect XMM registers and does not change XMM registers access mode.
//
// :ivar cancelling_inputs: indicates that the instruction form has not dependency on the values of input operands
// when they refer to the same register. E.g. **VPXOR xmm1, xmm0, xmm0** does not depend on *xmm0*.
//
// Instruction forms with cancelling inputs have only two input operands, which have the same register type.
//
// :ivar nacl_version: indicates the earliest Pepper API version where validator supports this instruction.
//
// Possible values are integers >= 33 or None. Pepper 33 is the earliest version for which information on
// supported instructions is available; if instruction forms supported before Pepper 33 would have
// nacl_version == 33. None means instruction is either not yet supported by Native Client validator, or
// is forbidden in Native Client SFI model.
//
// :ivar nacl_zero_extends_outputs: indicates that Native Client validator recognizes that the instruction zeroes
// the upper 32 bits of the output registers.
//
// In x86-64 Native Client SFI model this means that the subsequent instruction can use registers written by
// this instruction for memory addressing.
//
// :ivar operands: a list of :class:`Operand` objects representing the instruction operands.
// :ivar implicit_inputs: a set of register names that are implicitly read by this instruction.
// :ivar implicit_outputs: a set of register names that are implicitly written by this instruction.
// :ivar isa_extensions: a list of :class:`ISAExtension` objects that represent the ISA extensions required to execute
// the instruction.
// :ivar encodings: a list of :class:`Encoding` objects representing the possible encodings for this instruction.
// """
type Form struct {
GASName string `xml:"gas-name,attr"`
GoName string `xml:"go-name,attr"`
MMXMode string `xml:"mmx-mode,attr"`
XMMMode string `xml:"xmm-mode,attr"`
CancellingInputs bool `xml:"cancelling-inputs,attr"`
Operands []Operand `xml:"Operand"`
ImplicitOperands []ImplicitOperand `xml:"ImplicitOperand"`
ISA []ISA `xml:"ISA"`
Encoding Encoding `xml:"Encoding"`
}
// Operand describes an accepted operand type and the read/write action the instruction will perform.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L114-L338
//
// """An explicit instruction operand.
//
// :ivar type: the type of the instruction operand. Possible values are:
//
// "1"
// The constant value `1`.
//
// "3"
// The constant value `3`.
//
// "al"
// The al register.
//
// "ax"
// The ax register.
//
// "eax"
// The eax register.
//
// "rax"
// The rax register.
//
// "cl"
// The cl register.
//
// "xmm0"
// The xmm0 register.
//
// "rel8"
// An 8-bit signed offset relative to the address of instruction end.
//
// "rel32"
// A 32-bit signed offset relative to the address of instruction end.
//
// "imm4"
// A 4-bit immediate value.
//
// "imm8"
// An 8-bit immediate value.
//
// "imm16"
// A 16-bit immediate value.
//
// "imm32"
// A 32-bit immediate value.
//
// "imm64"
// A 64-bit immediate value.
//
// "r8"
// An 8-bit general-purpose register (al, bl, cl, dl, sil, dil, bpl, spl, r8b-r15b).
//
// "r16"
// A 16-bit general-purpose register (ax, bx, cx, dx, si, di, bp, sp, r8w-r15w).
//
// "r32"
// A 32-bit general-purpose register (eax, ebx, ecx, edx, esi, edi, ebp, esp, r8d-r15d).
//
// "r64"
// A 64-bit general-purpose register (rax, rbx, rcx, rdx, rsi, rdi, rbp, rsp, r8-r15).
//
// "mm"
// A 64-bit MMX SIMD register (mm0-mm7).
//
// "xmm"
// A 128-bit XMM SIMD register (xmm0-xmm31).
//
// "xmm{k}"
// A 128-bit XMM SIMD register (xmm0-xmm31), optionally merge-masked by an AVX-512 mask register (k1-k7).
//
// "xmm{k}{z}"
// A 128-bit XMM SIMD register (xmm0-xmm31), optionally masked by an AVX-512 mask register (k1-k7).
//
// "ymm"
// A 256-bit YMM SIMD register (ymm0-ymm31).
//
// "ymm{k}"
// A 256-bit YMM SIMD register (ymm0-ymm31), optionally merge-masked by an AVX-512 mask register (k1-k7).
//
// "ymm{k}{z}"
// A 256-bit YMM SIMD register (ymm0-ymm31), optionally masked by an AVX-512 mask register (k1-k7).
//
// "zmm"
// A 512-bit ZMM SIMD register (zmm0-zmm31).
//
// "zmm{k}"
// A 512-bit ZMM SIMD register (zmm0-zmm31), optionally merge-masked by an AVX-512 mask register (k1-k7).
//
// "zmm{k}{z}"
// A 512-bit ZMM SIMD register (zmm0-zmm31), optionally masked by an AVX-512 mask register (k1-k7).
//
// "k"
// An AVX-512 mask register (k0-k7).
//
// "k{k}"
// An AVX-512 mask register (k0-k7), optionally merge-masked by an AVX-512 mask register (k1-k7).
//
// "m"
// A memory operand of any size.
//
// "m8"
// An 8-bit memory operand.
//
// "m16"
// A 16-bit memory operand.
//
// "m16{k}{z}"
// A 16-bit memory operand, optionally masked by an AVX-512 mask register (k1-k7).
//
// "m32"
// A 32-bit memory operand.
//
// "m32{k}"
// A 32-bit memory operand, optionally merge-masked by an AVX-512 mask register (k1-k7).
//
// "m32{k}{z}"
// A 32-bit memory operand, optionally masked by an AVX-512 mask register (k1-k7).
//
// "m64"
// A 64-bit memory operand.
//
// "m64{k}"
// A 64-bit memory operand, optionally merge-masked by an AVX-512 mask register (k1-k7).
//
// "m64{k}{z}"
// A 64-bit memory operand, optionally masked by an AVX-512 mask register (k1-k7).
//
// "m80"
// An 80-bit memory operand.
//
// "m128"
// A 128-bit memory operand.
//
// "m128{k}{z}"
// A 128-bit memory operand, optionally masked by an AVX-512 mask register (k1-k7).
//
// "m256"
// A 256-bit memory operand.
//
// "m256{k}{z}"
// A 256-bit memory operand, optionally masked by an AVX-512 mask register (k1-k7).
//
// "m512"
// A 512-bit memory operand.
//
// "m512{k}{z}"
// A 512-bit memory operand, optionally masked by an AVX-512 mask register (k1-k7).
//
// "m64/m32bcst"
// A 64-bit memory operand or a 32-bit memory operand broadcasted to 64 bits {1to2}.
//
// "m128/m32bcst"
// A 128-bit memory operand or a 32-bit memory operand broadcasted to 128 bits {1to4}.
//
// "m256/m32bcst"
// A 256-bit memory operand or a 32-bit memory operand broadcasted to 256 bits {1to8}.
//
// "m512/m32bcst"
// A 512-bit memory operand or a 32-bit memory operand broadcasted to 512 bits {1to16}.
//
// "m128/m64bcst"
// A 128-bit memory operand or a 64-bit memory operand broadcasted to 128 bits {1to2}.
//
// "m256/m64bcst"
// A 256-bit memory operand or a 64-bit memory operand broadcasted to 256 bits {1to4}.
//
// "m512/m64bcst"
// A 512-bit memory operand or a 64-bit memory operand broadcasted to 512 bits {1to8}.
//
// "vm32x"
// A vector of memory addresses using VSIB with 32-bit indices in XMM register.
//
// "vm32x{k}"
// A vector of memory addresses using VSIB with 32-bit indices in XMM register merge-masked by an AVX-512 mask
// register (k1-k7).
//
// "vm32y"
// A vector of memory addresses using VSIB with 32-bit indices in YMM register.
//
// "vm32y{k}"
// A vector of memory addresses using VSIB with 32-bit indices in YMM register merge-masked by an AVX-512 mask
// register (k1-k7).
//
// "vm32z"
// A vector of memory addresses using VSIB with 32-bit indices in ZMM register.
//
// "vm32z{k}"
// A vector of memory addresses using VSIB with 32-bit indices in ZMM register merge-masked by an AVX-512 mask
// register (k1-k7).
//
// "vm64x"
// A vector of memory addresses using VSIB with 64-bit indices in XMM register.
//
// "vm64x{k}"
// A vector of memory addresses using VSIB with 64-bit indices in XMM register merge-masked by an AVX-512 mask
// register (k1-k7).
//
// "vm64y"
// A vector of memory addresses using VSIB with 64-bit indices in YMM register.
//
// "vm64y{k}"
// A vector of memory addresses using VSIB with 64-bit indices in YMM register merge-masked by an AVX-512 mask
// register (k1-k7).
//
// "vm64z"
// A vector of memory addresses using VSIB with 64-bit indices in ZMM register.
//
// "vm64z{k}"
// A vector of memory addresses using VSIB with 64-bit indices in ZMM register merge-masked by an AVX-512 mask
// register (k1-k7).
//
// "{sae}"
// Suppress-all-exceptions modifier. This operand is optional and can be omitted.
//
// "{er}"
// Embedded rounding control. This operand is optional and can be omitted.
//
// :ivar is_input: indicates if the instruction reads the variable specified by this operand.
// :ivar is_output: indicates if the instruction writes the variable specified by this operand.
// :ivar extended_size: for immediate operands the size of the value in bytes after size-extension.
//
// The extended size affects which operand values can be encoded. E.g. a signed imm8 operand would normally \
// encode values in the [-128, 127] range. But if it is extended to 4 bytes, it can also encode values in \
// [2**32 - 128, 2**32 - 1] range.
// """
type Operand struct {
Type string `xml:"type,attr"`
Input bool `xml:"input,attr"`
Output bool `xml:"output,attr"`
}
// ImplicitOperand represents the implicit action of an instruction on a register.
type ImplicitOperand struct {
ID string `xml:"id,attr"`
Input bool `xml:"input,attr"`
Output bool `xml:"output,attr"`
}
// ISA is the name of an instruction set extension an instruction form belongs to.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L430-L487
//
// """An extension to x86-64 instruction set.
//
// :ivar name: name of the ISA extension. Possible values are:
//
// - "RDTSC" := The `RDTSC` instruction.
// - "RDTSCP" := The `RDTSCP` instruction.
// - "CPUID" := The `CPUID` instruction.
// - "FEMMS" := The `FEMMS` instruction.
// - "MOVBE" := The `MOVBE` instruction.
// - "POPCNT" := The `POPCNT` instruction.
// - "LZCNT" := The `LZCNT` instruction.
// - "PCLMULQDQ" := The `PCLMULQDQ` instruction.
// - "RDRAND" := The `RDRAND` instruction.
// - "RDSEED" := The `RDSEED` instruction.
// - "CLFLUSH" := The `CLFLUSH` instruction.
// - "CLFLUSHOPT" := The `CLFLUSHOPT` instruction.
// - "CLWB" := The `CLWB` instruction.
// - "CLZERO" := The `CLZERO` instruction.
// - "PREFETCH" := The `PREFETCH` instruction (3dnow! Prefetch).
// - "PREFETCHW" := The `PREFETCHW` instruction (3dnow! Prefetch/Intel PRFCHW).
// - "PREFETCHWT1" := The `PREFETCHWT1` instruction.
// - "MONITOR" := The `MONITOR` and `MWAIT` instructions.
// - "MONITORX" := The `MONITORX` and `MWAITX` instructions.
// - "CMOV" := Conditional MOVe instructions.
// - "MMX" := MultiMedia eXtension.
// - "MMX+" := AMD MMX+ extension / Integer SSE (Intel).
// - "3dnow!" := AMD 3dnow! extension.
// - "3dnow+!" := AMD 3dnow!+ extension.
// - "SSE" := Streaming SIMD Extension.
// - "SSE2" := Streaming SIMD Extension 2.
// - "SSE3" := Streaming SIMD Extension 3.
// - "SSSE3" := Supplemental Streaming SIMD Extension 3.
// - "SSE4.1" := Streaming SIMD Extension 4.1.
// - "SSE4.2" := Streaming SIMD Extension 4.2.
// - "SSE4A" := Streaming SIMD Extension 4a.
// - "AVX" := Advanced Vector eXtension.
// - "AVX2" := Advanced Vector eXtension 2.
// - "AVX512F" := AVX-512 Foundation instructions.
// - "AVX512BW" := AVX-512 Byte and Word instructions.
// - "AVX512DQ" := AVX-512 Doubleword and Quadword instructions.
// - "AVX512VL" := AVX-512 Vector Length extension (EVEX-encoded XMM/YMM operations).
// - "AVX512PF" := AVX-512 Prefetch instructions.
// - "AVX512ER" := AVX-512 Exponential and Reciprocal instructions.
// - "AVX512CD" := AVX-512 Conflict Detection instructions.
// - "AVX512VBMI" := AVX-512 Vector Bit Manipulation instructions.
// - "AVX512IFMA" := AVX-512 Integer 52-bit Multiply-Accumulate instructions.
// - "AVX512VPOPCNTDQ" := AVX-512 Vector Population Count instructions.
// - "XOP" := eXtended OPerations extension.
// - "F16C" := Half-Precision (F16) Conversion instructions.
// - "FMA3" := Fused Multiply-Add instructions (3-operand).
// - "FMA4" := Fused Multiply-Add instructions (4-operand).
// - "BMI" := Bit Manipulation Instructions.
// - "BMI2" := Bit Manipulation Instructions 2.
// - "TBM" := Trailing Bit Manipulation instructions.
// - "ADX" := The `ADCX` and `ADOX` instructions.
// - "AES" := `AES` instruction set.
// - "SHA" := `SHA` instruction set.
// """
type ISA struct {
ID string `xml:"id,attr"`
}
// Encoding describes the instruction form binary representation.
type Encoding struct {
REX *REX `xml:"REX"`
VEX *VEX `xml:"VEX"`
EVEX *EVEX `xml:"EVEX"`
}
// REX specifies the REX encoding of an instruction form.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L541-L574
//
// """REX prefix.
//
// Encoding may have only one REX prefix and if present, it immediately precedes the opcode.
//
// :ivar is_mandatory: indicates whether the REX prefix must be encoded even if no extended registers are used.
//
// REX is mandatory for most 64-bit instructions (encoded with REX.W = 1) and instructions that operate on the \
// extended set of 8-bit registers (to indicate access to dil/sil/bpl/spl as opposed to ah/bh/ch/dh which use the \
// same ModR/M).
//
// :ivar W: the REX.W bit. Possible values are 0, 1, and None.
//
// None indicates that the bit is ignored.
//
// :ivar R: the REX.R bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If R is a reference to an instruction operand, the operand is of register type and REX.R bit specifies the \
// high bit (bit 3) of the register number.
//
// :ivar B: the REX.B bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If R is a reference to an instruction operand, the operand can be of register or memory type. If the operand \
// is of register type, the REX.R bit specifies the high bit (bit 3) of the register number, and the REX.X bit is \
// ignored. If the operand is of memory type, the REX.R bit specifies the high bit (bit 3) of the base register \
// number, and the X instance variable refers to the same operand.
//
// :ivar X: the REX.X bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If X is a reference to an instruction operand, the operand is of memory type and the REX.X bit specifies the \
// high bit (bit 3) of the index register number, and the B instance variable refers to the same operand.
// """
type REX struct {
Mandatory bool `xml:"mandatory,attr"`
W uint `xml:"W,attr"`
R string `xml:"R,attr"`
X string `xml:"X,attr"`
B string `xml:"B,attr"`
}
// VEX specifies the VEX encoding of an instruction form.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L606-L691
//
// """VEX or XOP prefix.
//
// VEX and XOP prefixes use the same format and differ only by leading byte.
// The `type` property helps to differentiate between the two prefix types.
//
// Encoding may have only one VEX prefix and if present, it immediately precedes the opcode, and no other prefix is \
// allowed.
//
// :ivar type: the type of the leading byte for VEX encoding. Possible values are:
//
// "VEX"
// The VEX prefix (0xC4 or 0xC5) is used.
//
// "XOP"
// The XOP prefix (0x8F) is used.
//
// :ivar mmmmm: the VEX m-mmmm (implied leading opcode bytes) field. In AMD documentation this field is called map_select. Possible values are:
//
// 0b00001
// Implies 0x0F leading opcode byte.
//
// 0b00010
// Implies 0x0F 0x38 leading opcode bytes.
//
// 0b00011
// Implies 0x0F 0x3A leading opcode bytes.
//
// 0b01000
// This value does not have opcode byte interpretation. Only XOP instructions use this value.
//
// 0b01001
// This value does not have opcode byte interpretation. Only XOP and TBM instructions use this value.
//
// 0b01010
// This value does not have opcode byte interpretation. Only TBM instructions use this value.
//
// Only VEX prefix with m-mmmm equal to 0b00001 could be encoded in two bytes.
//
// :ivar pp: the VEX pp (implied legacy prefix) field. Possible values are:
//
// 0b00
// No implied prefix.
//
// 0b01
// Implied 0x66 prefix.
//
// 0b10
// Implied 0xF3 prefix.
//
// 0b11
// Implied 0xF2 prefix.
//
// :ivar W: the VEX.W bit. Possible values are 0, 1, and None.
//
// None indicates that the bit is ignored.
//
// :ivar L: the VEX.L bit. Possible values are 0, 1, and None.
//
// None indicates that the bit is ignored.
//
// :ivar R: the VEX.R bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If R is a reference to an instruction operand, the operand is of register type and VEX.R bit specifies the \
// high bit (bit 3) of the register number.
//
// :ivar B: the VEX.B bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If R is a reference to an instruction operand, the operand can be of register or memory type. If the operand is \
// of register type, the VEX.R bit specifies the high bit (bit 3) of the register number, and the VEX.X bit is \
// ignored. If the operand is of memory type, the VEX.R bit specifies the high bit (bit 3) of the base register \
// number, and the X instance variable refers to the same operand.
//
// :ivar X: the VEX.X bit. Possible values are 0, 1, None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If X is a reference to an instruction operand, the operand is of memory type and the VEX.X bit specifies the \
// high bit (bit 3) of the index register number, and the B instance variable refers to the same operand.
//
// :ivar vvvv: the VEX vvvv field. Possible values are 0b0000 or a reference to one of the instruction operands.
//
// The value 0b0000 indicates that this field is not used. \
// If vvvv is a reference to an instruction operand, the operand is of register type and VEX.vvvv field specifies \
// its number.
// """
type VEX struct {
Type string `xml:"type,attr"`
W *uint `xml:"W,attr"`
L uint `xml:"L,attr"`
M5 string `xml:"m-mmmm,attr"`
PP string `xml:"pp,attr"`
R string `xml:"R,attr"`
X string `xml:"X,attr"`
B string `xml:"B,attr"`
V4 string `xml:"vvvv,attr"`
}
// EVEX specifies the EVEX encoding of an instruction form.
//
// Reference: https://github.com/Maratyszcza/Opcodes/blob/6e2b0cd9f1403ecaf164dea7019dd54db5aea252/opcodes/x86_64.py#L731-L845
//
// """EVEX prefix.
//
// Encoding may have only one EVEX prefix and if present, it immediately precedes the opcode, and no other prefix is \
// allowed.
//
// :ivar mm: the EVEX mm (compressed legacy escape) field. Identical to two low bits of VEX.m-mmmm field. Possible \
// values are:
//
// 0b01
// Implies 0x0F leading opcode byte.
//
// 0b10
// Implies 0x0F 0x38 leading opcode bytes.
//
// 0b11
// Implies 0x0F 0x3A leading opcode bytes.
//
// :ivar pp: the EVEX pp (compressed legacy prefix) field. Possible values are:
//
// 0b00
// No implied prefix.
//
// 0b01
// Implied 0x66 prefix.
//
// 0b10
// Implied 0xF3 prefix.
//
// 0b11
// Implied 0xF2 prefix.
//
// :ivar W: the EVEX.W bit. Possible values are 0, 1, and None.
//
// None indicates that the bit is ignored.
//
// :ivar LL: the EVEX.L'L bits. Specify either vector length for the operation, or explicit rounding control \
// (in which case operation is 512 bits wide). Possible values:
//
// None
// Indicates that the EVEX.L'L field is ignored.
//
// 0b00
// 128-bits wide operation.
//
// 0b01
// 256-bits wide operation.
//
// 0b10
// 512-bits wide operation.
//
// Reference to the last instruction operand
// EVEX.L'L are interpreted as rounding control and set to the value specified by the operand. If the rounding
// control operand is omitted, EVEX.L'L is set to 0b10 (embedded rounding control is only supported for 512-bit
// wide operations).
//
// :ivar RR: the EVEX.R'R bits. Possible values are None, or a reference to an register-type instruction operand.
//
// None indicates that the field is ignored.
// The R' bit specifies bit 4 of the register number and the R bit specifies bit 3 of the register number.
//
// :ivar B: the EVEX.B bit. Possible values are None, or a reference to one of the instruction operands.
//
// None indicates that this bit is ignored. \
// If R is a reference to an instruction operand, the operand can be of register or memory type. If the operand is\
// of register type, the EVEX.R bit specifies the high bit (bit 3) of the register number, and the EVEX.X bit is \
// ignored. If the operand is of memory type, the EVEX.R bit specifies the high bit (bit 3) of the base register \
// number, and the X instance variable refers to the same operand.
//
// :ivar X: the EVEX.X bit. Possible values are None, or a reference to one of the instruction operands.
//
// The value None indicates that this bit is ignored. \
// If X is a reference to an instruction operand, the operand is of memory type and the EVEX.X bit specifies the \
// high bit (bit 3) of the index register number, and the B instance variable refers to the same operand.
//
// :ivar vvvv: the EVEX vvvv field. Possible values are 0b0000 or a reference to one of the instruction operands.
//
// The value 0b0000 indicates that this field is not used. \
// If vvvv is a reference to an instruction operand, the operand is of register type and EVEX.vvvv field \
// specifies the register number.
//
// :ivar V: the EVEX V field. Possible values are 0, or a reference to one of the instruction operands.
//
// The value 0 indicates that this field is not used (EVEX.vvvv is not used or encodes a general-purpose register).
//
// :ivar b: the EVEX b (broadcast/rounding control/suppress all exceptions context) bit. Possible values are 0 or a \
// reference to one of the instruction operands.
//
// The value 0 indicates that this field is not used. \
// If b is a reference to an instruction operand, the operand can be a memory operand with optional broadcasting, \
// an optional rounding specification, or an optional Suppress-all-exceptions specification. \
// If b is a reference to a memory operand, EVEX.b encodes whether broadcasting is used to the operand. \
// If b is a reference to a optional rounding control specification, EVEX.b encodes whether explicit rounding \
// control is used. \
// If b is a reference to a suppress-all-exceptions specification, EVEX.b encodes whether suppress-all-exceptions \
// is enabled.
//
// :ivar aaa: the EVEX aaa (embedded opmask register specifier) field. Possible values are 0 or a reference to one of \
// the instruction operands.
//
// The value 0 indicates that this field is not used. \
// If aaa is a reference to an instruction operand, the operand supports register mask, and EVEX.aaa encodes the \
// mask register.
//
// :ivar z: the EVEX z bit. Possible values are None, 0 or a reference to one of the instruction operands.
//
// None indicates that the bit is ignored. \
// The value 0 indicates that the bit is not used. \
// If z is a reference to an instruction operand, the operand supports zero-masking with register mask, and \
// EVEX.z indicates whether zero-masking is used.
//
// :ivar disp8xN: the N value used for encoding compressed 8-bit displacement. Possible values are powers of 2 in \
// [1, 64] range or None.
//
// None indicates that this instruction form does not use displacement (the form has no memory operands).
// """
type EVEX struct {
M2 string `xml:"mm,attr"`
PP string `xml:"pp,attr"`
W *uint `xml:"W,attr"`
LL string `xml:"LL,attr"`
V4 string `xml:"vvvv,attr"`
V string `xml:"V,attr"`
RR string `xml:"RR,attr"`
B string `xml:"B,attr"`
X string `xml:"X,attr"`
Bsml string `xml:"b,attr"`
A3 string `xml:"aaa,attr"`
Z string `xml:"Z,attr"`
Disp8xN string `xml:"disp8xN,attr"`
}
|