1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
package pass
import (
"errors"
"github.com/mmcloughlin/avo/gotypes"
"github.com/mmcloughlin/avo/ir"
"github.com/mmcloughlin/avo/operand"
"github.com/mmcloughlin/avo/reg"
)
// ZeroExtend32BitOutputs applies the rule that "32-bit operands generate a
// 32-bit result, zero-extended to a 64-bit result in the destination
// general-purpose register" (Intel Software Developer’s Manual, Volume 1,
// 3.4.1.1).
func ZeroExtend32BitOutputs(i *ir.Instruction) error {
for j, op := range i.Outputs {
if !operand.IsR32(op) {
continue
}
r, ok := op.(reg.GP)
if !ok {
panic("r32 operand should satisfy reg.GP")
}
i.Outputs[j] = r.As64()
}
return nil
}
// Liveness computes register liveness.
func Liveness(fn *ir.Function) error {
// Note this implementation is initially naive so as to be "obviously correct".
// There are a well-known optimizations we can apply if necessary.
is := fn.Instructions()
// Process instructions in reverse: poor approximation to topological sort.
// TODO(mbm): process instructions in topological sort order
for l, r := 0, len(is)-1; l < r; l, r = l+1, r-1 {
is[l], is[r] = is[r], is[l]
}
// Initialize.
for _, i := range is {
i.LiveIn = reg.NewMaskSetFromRegisters(i.InputRegisters())
i.LiveOut = reg.NewEmptyMaskSet()
}
// Iterative dataflow analysis.
for {
changes := false
for _, i := range is {
// out[n] = UNION[s IN succ[n]] in[s]
for _, s := range i.Succ {
if s == nil {
continue
}
changes = i.LiveOut.Update(s.LiveIn) || changes
}
// in[n] = use[n] UNION (out[n] - def[n])
def := reg.NewMaskSetFromRegisters(i.OutputRegisters())
changes = i.LiveIn.Update(i.LiveOut.Difference(def)) || changes
}
if !changes {
break
}
}
return nil
}
// AllocateRegisters performs register allocation.
func AllocateRegisters(fn *ir.Function) error {
// Initialize one allocator per kind.
as := map[reg.Kind]*Allocator{}
for _, i := range fn.Instructions() {
for _, r := range i.Registers() {
k := r.Kind()
if _, found := as[k]; !found {
a, err := NewAllocatorForKind(k)
if err != nil {
return err
}
as[k] = a
}
}
}
// De-prioritize the base pointer register. This can be used as a general
// purpose register, but it's callee-save so needs to be saved/restored if
// it is clobbered. For this reason we prefer to avoid using it unless
// forced to by register pressure.
for k, a := range as {
f := reg.FamilyOfKind(k)
for _, r := range f.Registers() {
if (r.Info() & reg.BasePointer) != 0 {
// Negative priority penalizes this register relative to all
// others (having default zero priority).
a.SetPriority(r.ID(), -1)
}
}
}
// Populate registers to be allocated.
for _, i := range fn.Instructions() {
for _, r := range i.Registers() {
as[r.Kind()].Add(r.ID())
}
}
// Record register interferences.
for _, i := range fn.Instructions() {
for _, d := range i.OutputRegisters() {
k := d.Kind()
out := i.LiveOut.OfKind(k)
out.DiscardRegister(d)
as[k].AddInterferenceSet(d, out)
}
}
// Execute register allocation.
fn.Allocation = reg.NewEmptyAllocation()
for _, a := range as {
al, err := a.Allocate()
if err != nil {
return err
}
if err := fn.Allocation.Merge(al); err != nil {
return err
}
}
return nil
}
// BindRegisters applies the result of register allocation, replacing all virtual registers with their assigned physical registers.
func BindRegisters(fn *ir.Function) error {
for _, i := range fn.Instructions() {
for idx := range i.Operands {
i.Operands[idx] = operand.ApplyAllocation(i.Operands[idx], fn.Allocation)
}
for idx := range i.Inputs {
i.Inputs[idx] = operand.ApplyAllocation(i.Inputs[idx], fn.Allocation)
}
for idx := range i.Outputs {
i.Outputs[idx] = operand.ApplyAllocation(i.Outputs[idx], fn.Allocation)
}
}
return nil
}
// VerifyAllocation performs sanity checks following register allocation.
func VerifyAllocation(fn *ir.Function) error {
// All registers should be physical.
for _, i := range fn.Instructions() {
for _, r := range i.Registers() {
if reg.ToPhysical(r) == nil {
return errors.New("non physical register found")
}
}
}
return nil
}
// EnsureBasePointerCalleeSaved ensures that the base pointer register will be
// saved and restored if it has been clobbered by the function.
func EnsureBasePointerCalleeSaved(fn *ir.Function) error {
// Check to see if the base pointer is written to.
clobbered := false
for _, i := range fn.Instructions() {
for _, r := range i.OutputRegisters() {
if p := reg.ToPhysical(r); p != nil && (p.Info()®.BasePointer) != 0 {
clobbered = true
}
}
}
if !clobbered {
return nil
}
// This function clobbers the base pointer register so we need to ensure it
// will be saved and restored. The Go assembler will do this automatically,
// with a few exceptions detailed below. In summary, we can usually ensure
// this happens by ensuring the function is not frameless (apart from
// NOFRAME functions).
//
// Reference: https://github.com/golang/go/blob/3f4977bd5800beca059defb5de4dc64cd758cbb9/src/cmd/internal/obj/x86/obj6.go#L591-L609
//
// var bpsize int
// if ctxt.Arch.Family == sys.AMD64 &&
// !p.From.Sym.NoFrame() && // (1) below
// !(autoffset == 0 && p.From.Sym.NoSplit()) && // (2) below
// !(autoffset == 0 && !hasCall) { // (3) below
// // Make room to save a base pointer.
// // There are 2 cases we must avoid:
// // 1) If noframe is set (which we do for functions which tail call).
// // 2) Scary runtime internals which would be all messed up by frame pointers.
// // We detect these using a heuristic: frameless nosplit functions.
// // TODO: Maybe someday we label them all with NOFRAME and get rid of this heuristic.
// // For performance, we also want to avoid:
// // 3) Frameless leaf functions
// bpsize = ctxt.Arch.PtrSize
// autoffset += int32(bpsize)
// p.To.Offset += int64(bpsize)
// } else {
// bpsize = 0
// }
//
if fn.Attributes.NOFRAME() {
return errors.New("NOFRAME function clobbers base pointer register")
}
if fn.LocalSize == 0 {
fn.AllocLocal(int(gotypes.PointerSize))
}
return nil
}
|